Iglesias Martínez, ME.; Antonino-Daviu, JA.; Fernández De Córdoba, P.; Conejero, JA.; Dunai, L. (2021). Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals. IEEE Transactions on Industry Applications. 57(6):5876-5886. https://doi.org/10.1109/TIA.2021.3108413
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185585
Título:
|
Automatic Classification of Winding Asymmetries in Wound Rotor Induction Motors based on Bicoherence and Fuzzy C-Means Algorithms of Stray Flux Signals
|
Autor:
|
Iglesias Martínez, Miguel Enrique
Antonino-Daviu, Jose A.
Fernández de Córdoba, Pedro
Conejero, J. Alberto
Dunai, Larisa
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
|
Fecha difusión:
|
|
Resumen:
|
[EN] Wound rotor induction motors are used in a certain number of industrial applications due to their interesting advantages, such as the possibility of inserting external rheostats in series with the rotor winding to ...[+]
[EN] Wound rotor induction motors are used in a certain number of industrial applications due to their interesting advantages, such as the possibility of inserting external rheostats in series with the rotor winding to enhance the torque characteristics under starting and to decrease the high inrush currents. However, the more complex structure of the rotor winding, compared to cage induction motors, is a source for potential maintenance problems. In this regard, several anomalies can lead to the occurrence of asymmetries in the rotor winding that may yield terrible repercussions for the machine¿s integrity. Therefore, monitoring the levels of asymmetry in the rotor winding is of paramount importance to ensure the correct operation of the motor. This work proposes the use of Bicoherence of the stray flux signal, as an indicator to obtain an automatic classification of the rotor winding condition. For this, the Fuzzy C-Means machine learning algorithm is used, which starts with the Bicoherence calculation and generates the different clusters for grouping and classification, according to the level of winding asymmetry. In addition, an analysis regarding the influence of the flux sensor position on the automatic classification and the failure detection is carried out. The results are highly satisfactory and prove the potential of the method for its future incorporation in autonomous condition monitoring systems that can be satisfactorily applied to determine the health of these machines.
[-]
|
Palabras clave:
|
Fault diagnosis
,
Asymmetries
,
Bicoherence
,
Fuzzy C-Means
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
IEEE Transactions on Industry Applications. (issn:
0093-9994
)
|
DOI:
|
10.1109/TIA.2021.3108413
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/TIA.2021.3108413
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P//Dinámica de operadores/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/
|
Descripción:
|
(c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
|
Agradecimientos:
|
This work was supported in part by Generalitat Valenciana, Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital, (project AICO/019/224) and in part by MEC under Project MTM2016-75963-P.
|
Tipo:
|
Artículo
|