- -

Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen

Mostrar el registro completo del ítem

Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Martínez-García, M. (2021). Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(4):1-15. https://doi.org/10.1007/s40430-021-02948-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186157

Ficheros en el ítem

Metadatos del ítem

Título: Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen
Autor: Payri, Raul Gimeno, Jaime Marti-Aldaravi, Pedro Martínez-García, María
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Cavitation phase change phenomenon appears in many engineering applications, often eroding and damaging surfaces, so deteriorating the performance of devices. Therefore, it is a phenomenon of great interest for the ...[+]
Palabras clave: CFD , Eulerian , Cavitation , Atomization , Validation
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Brazilian Society of Mechanical Sciences and Engineering. (issn: 1678-5878 )
DOI: 10.1007/s40430-021-02948-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s40430-021-02948-z
Código del Proyecto:
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F118//AYUDA PREDOCTORAL GVA-MARTINEZ GARCIA. PROYECTO: COMPUTATIONAL STUDY OF THE INJECTION PROCESS IN GASOLINE DIRECT INJECTION (GDi) engines./
Agradecimientos:
The equipment and resources used in this work have been partially supported by the Universitat Politecnica de Valencia in the framework of the PAID-06-18 program (reference SP20180170). Additionally, the Ph.D. student ...[+]
Tipo: Artículo

References

Abbasiasl T, Niazi S, Aghdam AS, Chen H, Cebeci FÇ, Ghorbani M, Grishenkov D, Koşar A (2020) Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Adv. https://doi.org/10.1063/1.5142607

Arabnejad MH, Amini A, Farhat M, Bensow RE (2019) Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int J Multiph Flow 119:123–143. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.010

Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale CL (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. At Sprays 22(10):807–842. https://doi.org/10.1615/AtomizSpr.2013005837 [+]
Abbasiasl T, Niazi S, Aghdam AS, Chen H, Cebeci FÇ, Ghorbani M, Grishenkov D, Koşar A (2020) Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Adv. https://doi.org/10.1063/1.5142607

Arabnejad MH, Amini A, Farhat M, Bensow RE (2019) Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int J Multiph Flow 119:123–143. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.010

Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale CL (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. At Sprays 22(10):807–842. https://doi.org/10.1615/AtomizSpr.2013005837

Battistoni M, Duke DJ, Swantek AB, Tilocco FZ, Powell CF, Som S (2015) Effects of noncondensable gas on cavitating nozzles. At Sprays 25(6):453–483. https://doi.org/10.1615/AtomizSpr.2015011076

Battistoni M, Magnotti GM, Genzale CL, Arienti M, Matusik KE, Duke DJ, Giraldo J, Ilavsky J, Kastengren AL, Powell CF, Marti-Aldaravi P (2018) Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE Technical Paper (2018-01-0277), 1–15. https://doi.org/10.4271/2018-01-0277

Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proceed Royal Soc Math Phys Eng Sci 428:379–397. https://doi.org/10.1098/rspa.1990.0040

Brusiani F, Negro S, Bianchi GM, Moulai M, Neroorkar K, Schmidt DP (2013) Comparison of the homogeneous relaxation model and a rayleigh plesset cavitation model in predicting the cavitating flow through various injector hole shapes. SAE Int. https://doi.org/10.4271/2013-01-1613

Cazzoli G, Falfari S, Bianchi GM, Forte C, Catellani C (2016) Assessment of the Cavitation models implemented in openFOAM®. Under DI-like Cond Energy Proced 101:638–645. https://doi.org/10.1016/j.egypro.2016.11.081

Cervone A, Bramanti C, Rapposelli E, D’Agostino L (2006) Thermal cavitation experiments on a NACA 0015 hydrofoil. J Fluids Eng Trans ASME 128:326–331. https://doi.org/10.1115/1.2169808

Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng Trans ASME 125:38–45. https://doi.org/10.1115/1.1524584

De Lorenzo M, Lafon P, Di Matteo M, Pelanti M, Seynhaeve JM, Bartosiewicz Y (2017) Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int J Multiph Flow 95:199–219. https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001

Duke DJ, Kastengren AL, Matusik KE, Powell CF (2018) Hard X-ray fluorescence spectroscopy of high pressure cavitating fluids in aluminum nozzles. Int J Multiph Flow 108:69–79. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.026

Gevari MT, Abbasiasl T, Niazi S, Ghorbani M, Koşar A (2020) Direct and indirect thermal applications of hydrodynamic and acoustic cavitation a review. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115065

Gimeno J, Bracho G, Martí-Aldaraví P, Peraza J (2016) Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. part I: inert atmosphere. Energy Conv Manag 126:1146–1156. https://doi.org/10.1016/j.enconman.2016.07.077

Guo G, He Z, Zhang Z, Duan L, Guan W, Duan X, Jin Y (2020) Visual experimental investigations of string cavitation and residual bubbles in the diesel nozzle and effects on initial spray structures. Int J Engine Res 21(3):437–447. https://doi.org/10.1177/1468087418791061

bo Huang H, Long Y, Ji B (2020) Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations. J Hydrodyn 32:82–92. https://doi.org/10.1007/s42241-020-0005-5

Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62(1):40–65 https://doi.org/10.1016/0021-9991(86)90099-9. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0103https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0104

Jahangir S, Wagner EC, Mudde RF, Poelma C (2019) Void fraction measurements in partial cavitation regimes by X-ray computed tomography. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103085

Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine Combustion Network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052. https://doi.org/10.1615/AtomizSpr.2013006309

Kirsch V, Hermans M, Schönberger J, Ruoff I, Willmann M, Reisgen U, Kneer R, Reddemann MA (2019) Transparent high-pressure nozzles for visualization of nozzle internal and external flow phenomena. Rev Sci Instrum 10(1063/1):5065658. https://doi.org/10.1063/1.5065658

Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39. https://doi.org/10.1016/j.fuel.2016.02.037

Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned navier-stokes method for two-phase flows with application to Cavitation prediction. Comput Fluids 29:849–875. https://doi.org/10.2514/6.1999-3329

Kunz RF, Stinebring DR, Chyczewski TS, Boger DA, Gibeling HJ, Govindan TR (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: FEDSM’99, 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco

Li D, Kang Y, Ding X, Liu W (2017) Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet. Exp Therm Fluid Sci 82:314–325. https://doi.org/10.1016/j.expthermflusci.2016.11.029

Li M, Yao J, Lan B, Sankin G, Zhou Y, Liu W, Xia J, Wang D, Trahey G, Zhong P (2020) Simultaneous photoacoustic imaging and cavitation mapping in Shockwave lithotripsy. IEEE Trans Med Imag 39(2):468–477. https://doi.org/10.1109/TMI.2019.2928740

Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA Technical Memorandum 103975, pp 1–31

Morgut M, Nobile E, Biluš I (2011) Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int J Multiph Flow 37(6):620–626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005

NIST: NIST Chemistry WebBook (2018). 10.18434/T4D303. https://doi.org/10.1615/AtomizSpr.20130058371

Obeid S, Jha R, Ahmadi G (2017) RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids. https://doi.org/10.3390/fluids2010002

Payri R, Gimeno J, Cuisano J, Arco J (2016) Hydraulic characterization of diesel engine single-hole injectors. Fuel 180:357–366. https://doi.org/10.1615/AtomizSpr.20130058372

Payri R, Gimeno J, Martí-Aldaraví P, Alarcón M (2017) A new approach to compute temperature in a liquid-gas mixture. application to study the effect of wall nozzle temperature on a Diesel injector. Int J Heat Fluid Flow 68:79–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.008

Payri R, Gimeno J, Martí-Aldaraví P, Carreres M (2015) Assessment on Internal Nozzle Flow Initialization in Diesel Spray Simulations. SAE Technical Paper 2015-01-0921. https://doi.org/10.4271/2015-01-0921

Payri R, Salvador FJ, Gimeno J, De la Morena J (2009) Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int J Heat Fluid Flow 30(4):768–777. https://doi.org/10.1016/j.ijheatfluidflow.2009.03.011

Payri R, Salvador FJ, Gimeno J, Venegas O (2013) Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Exp Therm Fluid Sci 44:235–244. https://doi.org/10.1016/j.expthermflusci.2012.06.013

Rachakonda SK, Wang Y, Grover RO, Moulai M, Baldwin E, Zhang G, Parrish S, Diwakar R, Kuo TW, Schmidt DP (2018) A computational approach to predict external spray characteristics for flashing and cavitating nozzles. Int J Multiph Flow 106:21–33. https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.012

Ro S, Kim B, Park S, Kim YB, Choi B, Jung S, Lee DW (2020) Internal caviating flow and external spray behavior characteristics according to length-to-width ratio of transparent nozzle orifice. Int J Autom Technol 21(1):181–188. https://doi.org/10.1007/s12239-020-0018-7

Saha K, Som S, Battistoni M (2016) Parametric Study of HRM for Gasoline Sprays. ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI

Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conv Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062

Salvador FJ, Gimeno J, Pastor JM, Martí-Aldaraví P (2014) Effect of turbulence model and inlet boundary condition on the diesel spray behavior simulated by an eulerian spray atomization (ESA) model. Int J Multiph Flow 65:108–116. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.003

Schnerr G, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: ICMF-2001, 4th Internationl Conference on Multiphase Flow. New Orleans

Shahangian N, Sharifian L, Uehara K, Noguchi Y, Martinez M, Marti-aldaravi P, Payri R (2020) Transient nozzle flow simulations of gasoline direct fuel injectors. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115356

Sandia National Laboratory: Engine Combustion Network (ECN) (2019). Retrieved from http://www.ecn.sandia.gov/

Torregrosa AJ, Payri R, Javier Salvador F, Crialesi-Esposito M (2020) Study of turbulence in atomizing liquid jets. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328

Vallet A, Burluka AA, Borghi R (2001) Development of a eulerian model for the “atomization’’ of a liquid jet. Atom Sprays 11(6):619–642. https://doi.org/10.1002/fld.1650080906

Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill Education, New York

Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631. https://doi.org/10.1063/1.168744

Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310. https://doi.org/10.2514/3.10041

Wilcox DC (2008) Formulation of the k-$$\omega$$ turbulence model revisited. AIAA J 46(11):2823–2838. https://doi.org/10.2514/1.36541

Winklhofer E, Kull E, Kelz E, Morozov A (2001) Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. In: ILASS-Europe. Zurich. https://doi.org/10.13140/2.1.1716.4161

Yu A, Luo X, Yang D, Zhou J (2018) Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions. Eng Comput (Swansea, Wales) 35(3):1528–1542. https://doi.org/10.1108/EC-01-2017-0020

Yu A, Tang Q, Zhou D (2019) Cavitation evolution around a NACA0015 hydrofoil with different cavitation models based on level set method. Appl Sci 9:758–771. https://doi.org/10.3390/app9040758

Zhou H, Xiang M, Okolo PN, Wu Z, Bennett GJ, Zhang W (2019) An efficient calibration approach for cavitation model constants based on OpenFOAM platform. J Mar Sci Technol 24:1043–1056. https://doi.org/10.1007/s00773-018-0604-9

Zhou H, Xiang M, Zhao S, Zhang W (2019) Development of a multiphase cavitation solver and its application for ventilated cavitating flows with natural cavitation. Int J Multiph Flow 115:62–74. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.020

Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: ICMF 2004 International Conference on Multiphase Flow. Yokohama

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem