- -

Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Gimeno, Jaime es_ES
dc.contributor.author Marti-Aldaravi, Pedro es_ES
dc.contributor.author Martínez-García, María es_ES
dc.date.accessioned 2022-09-15T18:03:42Z
dc.date.available 2022-09-15T18:03:42Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 1678-5878 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186157
dc.description.abstract [EN] Cavitation phase change phenomenon appears in many engineering applications, often eroding and damaging surfaces, so deteriorating the performance of devices. Therefore, it is a phenomenon of great interest for the research and industry communities. In this work, three different cavitation models, the Homogeneous Relaxation Model (HRM), the Schnerr and Sauer, and the Kunz, are implemented in a Eulerian multiphase homogeneous flow Computational Fluid Dynamics (CFD) solver previously developed for simulating fully atomized sprays. The improved solver can be used then to study not only cases with cavitation, such a hydrofoil, but also situations where cavitation occurs together with liquid atomization, such as high pressure injection systems. Validation of this solver is carried out for three different cases under diverse operating conditions: a two-dimmensional throttle, a hydrofoil and a single-hole fuel injector. The Reynolds-Averaged Navier-Stokes (RANS) approach is employed for taking into account the turbulence effects. Simulation results are compared to experimental data available in the literature. Among the tested cavitation models, the HRM is the one that provides the best accuracy in the three validation cases. Nevertheless, the onset of cavitation and the area occupied by the vapor cavities are always underpredicted, by all cavitation models in all validation cases. This can be associated to the unsteady and turbulent nature of the cavitation phenomenon. Even so, the computational prediction of several parameters, such as mass flow rate through the nozzles or spray spreading angle, has an error below 5-10%, which proves the capabilities of the solver. es_ES
dc.description.sponsorship The equipment and resources used in this work have been partially supported by the Universitat Politecnica de Valencia in the framework of the PAID-06-18 program (reference SP20180170). Additionally, the Ph.D. student Mariia Martinez has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from The European Union. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CFD es_ES
dc.subject Eulerian es_ES
dc.subject Cavitation es_ES
dc.subject Atomization es_ES
dc.subject Validation es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40430-021-02948-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F118//AYUDA PREDOCTORAL GVA-MARTINEZ GARCIA. PROYECTO: COMPUTATIONAL STUDY OF THE INJECTION PROCESS IN GASOLINE DIRECT INJECTION (GDi) engines./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Martínez-García, M. (2021). Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(4):1-15. https://doi.org/10.1007/s40430-021-02948-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40430-021-02948-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\435490 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.description.references Abbasiasl T, Niazi S, Aghdam AS, Chen H, Cebeci FÇ, Ghorbani M, Grishenkov D, Koşar A (2020) Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Adv. https://doi.org/10.1063/1.5142607 es_ES
dc.description.references Arabnejad MH, Amini A, Farhat M, Bensow RE (2019) Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int J Multiph Flow 119:123–143. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.010 es_ES
dc.description.references Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale CL (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. At Sprays 22(10):807–842. https://doi.org/10.1615/AtomizSpr.2013005837 es_ES
dc.description.references Battistoni M, Duke DJ, Swantek AB, Tilocco FZ, Powell CF, Som S (2015) Effects of noncondensable gas on cavitating nozzles. At Sprays 25(6):453–483. https://doi.org/10.1615/AtomizSpr.2015011076 es_ES
dc.description.references Battistoni M, Magnotti GM, Genzale CL, Arienti M, Matusik KE, Duke DJ, Giraldo J, Ilavsky J, Kastengren AL, Powell CF, Marti-Aldaravi P (2018) Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE Technical Paper (2018-01-0277), 1–15. https://doi.org/10.4271/2018-01-0277 es_ES
dc.description.references Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proceed Royal Soc Math Phys Eng Sci 428:379–397. https://doi.org/10.1098/rspa.1990.0040 es_ES
dc.description.references Brusiani F, Negro S, Bianchi GM, Moulai M, Neroorkar K, Schmidt DP (2013) Comparison of the homogeneous relaxation model and a rayleigh plesset cavitation model in predicting the cavitating flow through various injector hole shapes. SAE Int. https://doi.org/10.4271/2013-01-1613 es_ES
dc.description.references Cazzoli G, Falfari S, Bianchi GM, Forte C, Catellani C (2016) Assessment of the Cavitation models implemented in openFOAM®. Under DI-like Cond Energy Proced 101:638–645. https://doi.org/10.1016/j.egypro.2016.11.081 es_ES
dc.description.references Cervone A, Bramanti C, Rapposelli E, D’Agostino L (2006) Thermal cavitation experiments on a NACA 0015 hydrofoil. J Fluids Eng Trans ASME 128:326–331. https://doi.org/10.1115/1.2169808 es_ES
dc.description.references Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng Trans ASME 125:38–45. https://doi.org/10.1115/1.1524584 es_ES
dc.description.references De Lorenzo M, Lafon P, Di Matteo M, Pelanti M, Seynhaeve JM, Bartosiewicz Y (2017) Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int J Multiph Flow 95:199–219. https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001 es_ES
dc.description.references Duke DJ, Kastengren AL, Matusik KE, Powell CF (2018) Hard X-ray fluorescence spectroscopy of high pressure cavitating fluids in aluminum nozzles. Int J Multiph Flow 108:69–79. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.026 es_ES
dc.description.references Gevari MT, Abbasiasl T, Niazi S, Ghorbani M, Koşar A (2020) Direct and indirect thermal applications of hydrodynamic and acoustic cavitation a review. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115065 es_ES
dc.description.references Gimeno J, Bracho G, Martí-Aldaraví P, Peraza J (2016) Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. part I: inert atmosphere. Energy Conv Manag 126:1146–1156. https://doi.org/10.1016/j.enconman.2016.07.077 es_ES
dc.description.references Guo G, He Z, Zhang Z, Duan L, Guan W, Duan X, Jin Y (2020) Visual experimental investigations of string cavitation and residual bubbles in the diesel nozzle and effects on initial spray structures. Int J Engine Res 21(3):437–447. https://doi.org/10.1177/1468087418791061 es_ES
dc.description.references bo Huang H, Long Y, Ji B (2020) Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations. J Hydrodyn 32:82–92. https://doi.org/10.1007/s42241-020-0005-5 es_ES
dc.description.references Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62(1):40–65 https://doi.org/10.1016/0021-9991(86)90099-9. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0103https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0104 es_ES
dc.description.references Jahangir S, Wagner EC, Mudde RF, Poelma C (2019) Void fraction measurements in partial cavitation regimes by X-ray computed tomography. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103085 es_ES
dc.description.references Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine Combustion Network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052. https://doi.org/10.1615/AtomizSpr.2013006309 es_ES
dc.description.references Kirsch V, Hermans M, Schönberger J, Ruoff I, Willmann M, Reisgen U, Kneer R, Reddemann MA (2019) Transparent high-pressure nozzles for visualization of nozzle internal and external flow phenomena. Rev Sci Instrum 10(1063/1):5065658. https://doi.org/10.1063/1.5065658 es_ES
dc.description.references Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39. https://doi.org/10.1016/j.fuel.2016.02.037 es_ES
dc.description.references Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned navier-stokes method for two-phase flows with application to Cavitation prediction. Comput Fluids 29:849–875. https://doi.org/10.2514/6.1999-3329 es_ES
dc.description.references Kunz RF, Stinebring DR, Chyczewski TS, Boger DA, Gibeling HJ, Govindan TR (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: FEDSM’99, 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco es_ES
dc.description.references Li D, Kang Y, Ding X, Liu W (2017) Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet. Exp Therm Fluid Sci 82:314–325. https://doi.org/10.1016/j.expthermflusci.2016.11.029 es_ES
dc.description.references Li M, Yao J, Lan B, Sankin G, Zhou Y, Liu W, Xia J, Wang D, Trahey G, Zhong P (2020) Simultaneous photoacoustic imaging and cavitation mapping in Shockwave lithotripsy. IEEE Trans Med Imag 39(2):468–477. https://doi.org/10.1109/TMI.2019.2928740 es_ES
dc.description.references Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA Technical Memorandum 103975, pp 1–31 es_ES
dc.description.references Morgut M, Nobile E, Biluš I (2011) Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int J Multiph Flow 37(6):620–626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005 es_ES
dc.description.references NIST: NIST Chemistry WebBook (2018). 10.18434/T4D303. https://doi.org/10.1615/AtomizSpr.20130058371 es_ES
dc.description.references Obeid S, Jha R, Ahmadi G (2017) RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids. https://doi.org/10.3390/fluids2010002 es_ES
dc.description.references Payri R, Gimeno J, Cuisano J, Arco J (2016) Hydraulic characterization of diesel engine single-hole injectors. Fuel 180:357–366. https://doi.org/10.1615/AtomizSpr.20130058372 es_ES
dc.description.references Payri R, Gimeno J, Martí-Aldaraví P, Alarcón M (2017) A new approach to compute temperature in a liquid-gas mixture. application to study the effect of wall nozzle temperature on a Diesel injector. Int J Heat Fluid Flow 68:79–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.008 es_ES
dc.description.references Payri R, Gimeno J, Martí-Aldaraví P, Carreres M (2015) Assessment on Internal Nozzle Flow Initialization in Diesel Spray Simulations. SAE Technical Paper 2015-01-0921. https://doi.org/10.4271/2015-01-0921 es_ES
dc.description.references Payri R, Salvador FJ, Gimeno J, De la Morena J (2009) Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int J Heat Fluid Flow 30(4):768–777. https://doi.org/10.1016/j.ijheatfluidflow.2009.03.011 es_ES
dc.description.references Payri R, Salvador FJ, Gimeno J, Venegas O (2013) Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Exp Therm Fluid Sci 44:235–244. https://doi.org/10.1016/j.expthermflusci.2012.06.013 es_ES
dc.description.references Rachakonda SK, Wang Y, Grover RO, Moulai M, Baldwin E, Zhang G, Parrish S, Diwakar R, Kuo TW, Schmidt DP (2018) A computational approach to predict external spray characteristics for flashing and cavitating nozzles. Int J Multiph Flow 106:21–33. https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.012 es_ES
dc.description.references Ro S, Kim B, Park S, Kim YB, Choi B, Jung S, Lee DW (2020) Internal caviating flow and external spray behavior characteristics according to length-to-width ratio of transparent nozzle orifice. Int J Autom Technol 21(1):181–188. https://doi.org/10.1007/s12239-020-0018-7 es_ES
dc.description.references Saha K, Som S, Battistoni M (2016) Parametric Study of HRM for Gasoline Sprays. ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI es_ES
dc.description.references Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conv Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062 es_ES
dc.description.references Salvador FJ, Gimeno J, Pastor JM, Martí-Aldaraví P (2014) Effect of turbulence model and inlet boundary condition on the diesel spray behavior simulated by an eulerian spray atomization (ESA) model. Int J Multiph Flow 65:108–116. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.003 es_ES
dc.description.references Schnerr G, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: ICMF-2001, 4th Internationl Conference on Multiphase Flow. New Orleans es_ES
dc.description.references Shahangian N, Sharifian L, Uehara K, Noguchi Y, Martinez M, Marti-aldaravi P, Payri R (2020) Transient nozzle flow simulations of gasoline direct fuel injectors. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115356 es_ES
dc.description.references Sandia National Laboratory: Engine Combustion Network (ECN) (2019). Retrieved from http://www.ecn.sandia.gov/ es_ES
dc.description.references Torregrosa AJ, Payri R, Javier Salvador F, Crialesi-Esposito M (2020) Study of turbulence in atomizing liquid jets. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 es_ES
dc.description.references Vallet A, Burluka AA, Borghi R (2001) Development of a eulerian model for the “atomization’’ of a liquid jet. Atom Sprays 11(6):619–642. https://doi.org/10.1002/fld.1650080906 es_ES
dc.description.references Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill Education, New York es_ES
dc.description.references Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631. https://doi.org/10.1063/1.168744 es_ES
dc.description.references Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310. https://doi.org/10.2514/3.10041 es_ES
dc.description.references Wilcox DC (2008) Formulation of the k-$$\omega$$ turbulence model revisited. AIAA J 46(11):2823–2838. https://doi.org/10.2514/1.36541 es_ES
dc.description.references Winklhofer E, Kull E, Kelz E, Morozov A (2001) Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. In: ILASS-Europe. Zurich. https://doi.org/10.13140/2.1.1716.4161 es_ES
dc.description.references Yu A, Luo X, Yang D, Zhou J (2018) Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions. Eng Comput (Swansea, Wales) 35(3):1528–1542. https://doi.org/10.1108/EC-01-2017-0020 es_ES
dc.description.references Yu A, Tang Q, Zhou D (2019) Cavitation evolution around a NACA0015 hydrofoil with different cavitation models based on level set method. Appl Sci 9:758–771. https://doi.org/10.3390/app9040758 es_ES
dc.description.references Zhou H, Xiang M, Okolo PN, Wu Z, Bennett GJ, Zhang W (2019) An efficient calibration approach for cavitation model constants based on OpenFOAM platform. J Mar Sci Technol 24:1043–1056. https://doi.org/10.1007/s00773-018-0604-9 es_ES
dc.description.references Zhou H, Xiang M, Zhao S, Zhang W (2019) Development of a multiphase cavitation solver and its application for ventilated cavitating flows with natural cavitation. Int J Multiph Flow 115:62–74. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.020 es_ES
dc.description.references Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: ICMF 2004 International Conference on Multiphase Flow. Yokohama es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem