Mostrar el registro sencillo del ítem
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | Gimeno, Jaime | es_ES |
dc.contributor.author | Marti-Aldaravi, Pedro | es_ES |
dc.contributor.author | Martínez-García, María | es_ES |
dc.date.accessioned | 2022-09-15T18:03:42Z | |
dc.date.available | 2022-09-15T18:03:42Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 1678-5878 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186157 | |
dc.description.abstract | [EN] Cavitation phase change phenomenon appears in many engineering applications, often eroding and damaging surfaces, so deteriorating the performance of devices. Therefore, it is a phenomenon of great interest for the research and industry communities. In this work, three different cavitation models, the Homogeneous Relaxation Model (HRM), the Schnerr and Sauer, and the Kunz, are implemented in a Eulerian multiphase homogeneous flow Computational Fluid Dynamics (CFD) solver previously developed for simulating fully atomized sprays. The improved solver can be used then to study not only cases with cavitation, such a hydrofoil, but also situations where cavitation occurs together with liquid atomization, such as high pressure injection systems. Validation of this solver is carried out for three different cases under diverse operating conditions: a two-dimmensional throttle, a hydrofoil and a single-hole fuel injector. The Reynolds-Averaged Navier-Stokes (RANS) approach is employed for taking into account the turbulence effects. Simulation results are compared to experimental data available in the literature. Among the tested cavitation models, the HRM is the one that provides the best accuracy in the three validation cases. Nevertheless, the onset of cavitation and the area occupied by the vapor cavities are always underpredicted, by all cavitation models in all validation cases. This can be associated to the unsteady and turbulent nature of the cavitation phenomenon. Even so, the computational prediction of several parameters, such as mass flow rate through the nozzles or spray spreading angle, has an error below 5-10%, which proves the capabilities of the solver. | es_ES |
dc.description.sponsorship | The equipment and resources used in this work have been partially supported by the Universitat Politecnica de Valencia in the framework of the PAID-06-18 program (reference SP20180170). Additionally, the Ph.D. student Mariia Martinez has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/118 and financial support from The European Union. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Eulerian | es_ES |
dc.subject | Cavitation | es_ES |
dc.subject | Atomization | es_ES |
dc.subject | Validation | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40430-021-02948-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2018%2F118//AYUDA PREDOCTORAL GVA-MARTINEZ GARCIA. PROYECTO: COMPUTATIONAL STUDY OF THE INJECTION PROCESS IN GASOLINE DIRECT INJECTION (GDi) engines./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Martínez-García, M. (2021). Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomen. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(4):1-15. https://doi.org/10.1007/s40430-021-02948-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40430-021-02948-z | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\435490 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.description.references | Abbasiasl T, Niazi S, Aghdam AS, Chen H, Cebeci FÇ, Ghorbani M, Grishenkov D, Koşar A (2020) Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Adv. https://doi.org/10.1063/1.5142607 | es_ES |
dc.description.references | Arabnejad MH, Amini A, Farhat M, Bensow RE (2019) Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int J Multiph Flow 119:123–143. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.010 | es_ES |
dc.description.references | Bardi M, Payri R, Malbec LM, Bruneaux G, Pickett LM, Manin J, Bazyn T, Genzale CL (2012) Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels. At Sprays 22(10):807–842. https://doi.org/10.1615/AtomizSpr.2013005837 | es_ES |
dc.description.references | Battistoni M, Duke DJ, Swantek AB, Tilocco FZ, Powell CF, Som S (2015) Effects of noncondensable gas on cavitating nozzles. At Sprays 25(6):453–483. https://doi.org/10.1615/AtomizSpr.2015011076 | es_ES |
dc.description.references | Battistoni M, Magnotti GM, Genzale CL, Arienti M, Matusik KE, Duke DJ, Giraldo J, Ilavsky J, Kastengren AL, Powell CF, Marti-Aldaravi P (2018) Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D. SAE Technical Paper (2018-01-0277), 1–15. https://doi.org/10.4271/2018-01-0277 | es_ES |
dc.description.references | Bilicki Z, Kestin J (1990) Physical aspects of the relaxation model in two-phase flow. Proceed Royal Soc Math Phys Eng Sci 428:379–397. https://doi.org/10.1098/rspa.1990.0040 | es_ES |
dc.description.references | Brusiani F, Negro S, Bianchi GM, Moulai M, Neroorkar K, Schmidt DP (2013) Comparison of the homogeneous relaxation model and a rayleigh plesset cavitation model in predicting the cavitating flow through various injector hole shapes. SAE Int. https://doi.org/10.4271/2013-01-1613 | es_ES |
dc.description.references | Cazzoli G, Falfari S, Bianchi GM, Forte C, Catellani C (2016) Assessment of the Cavitation models implemented in openFOAM®. Under DI-like Cond Energy Proced 101:638–645. https://doi.org/10.1016/j.egypro.2016.11.081 | es_ES |
dc.description.references | Cervone A, Bramanti C, Rapposelli E, D’Agostino L (2006) Thermal cavitation experiments on a NACA 0015 hydrofoil. J Fluids Eng Trans ASME 128:326–331. https://doi.org/10.1115/1.2169808 | es_ES |
dc.description.references | Coutier-Delgosha O, Fortes-Patella R, Reboud JL (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng Trans ASME 125:38–45. https://doi.org/10.1115/1.1524584 | es_ES |
dc.description.references | De Lorenzo M, Lafon P, Di Matteo M, Pelanti M, Seynhaeve JM, Bartosiewicz Y (2017) Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int J Multiph Flow 95:199–219. https://doi.org/10.1016/j.ijmultiphaseflow.2017.06.001 | es_ES |
dc.description.references | Duke DJ, Kastengren AL, Matusik KE, Powell CF (2018) Hard X-ray fluorescence spectroscopy of high pressure cavitating fluids in aluminum nozzles. Int J Multiph Flow 108:69–79. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.026 | es_ES |
dc.description.references | Gevari MT, Abbasiasl T, Niazi S, Ghorbani M, Koşar A (2020) Direct and indirect thermal applications of hydrodynamic and acoustic cavitation a review. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115065 | es_ES |
dc.description.references | Gimeno J, Bracho G, Martí-Aldaraví P, Peraza J (2016) Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. part I: inert atmosphere. Energy Conv Manag 126:1146–1156. https://doi.org/10.1016/j.enconman.2016.07.077 | es_ES |
dc.description.references | Guo G, He Z, Zhang Z, Duan L, Guan W, Duan X, Jin Y (2020) Visual experimental investigations of string cavitation and residual bubbles in the diesel nozzle and effects on initial spray structures. Int J Engine Res 21(3):437–447. https://doi.org/10.1177/1468087418791061 | es_ES |
dc.description.references | bo Huang H, Long Y, Ji B (2020) Experimental investigation of vortex generator influences on propeller cavitation and hull pressure fluctuations. J Hydrodyn 32:82–92. https://doi.org/10.1007/s42241-020-0005-5 | es_ES |
dc.description.references | Issa R (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62(1):40–65 https://doi.org/10.1016/0021-9991(86)90099-9. https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0103https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.0104 | es_ES |
dc.description.references | Jahangir S, Wagner EC, Mudde RF, Poelma C (2019) Void fraction measurements in partial cavitation regimes by X-ray computed tomography. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103085 | es_ES |
dc.description.references | Kastengren AL, Tilocco FZ, Powell CF, Manin J, Pickett LM, Payri R, Bazyn T (2012) Engine Combustion Network (ECN): measurements of nozzle geometry and hydraulic behavior. At Sprays 22(12):1011–1052. https://doi.org/10.1615/AtomizSpr.2013006309 | es_ES |
dc.description.references | Kirsch V, Hermans M, Schönberger J, Ruoff I, Willmann M, Reisgen U, Kneer R, Reddemann MA (2019) Transparent high-pressure nozzles for visualization of nozzle internal and external flow phenomena. Rev Sci Instrum 10(1063/1):5065658. https://doi.org/10.1063/1.5065658 | es_ES |
dc.description.references | Koukouvinis P, Gavaises M, Li J, Wang L (2016) Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage. Fuel 175:26–39. https://doi.org/10.1016/j.fuel.2016.02.037 | es_ES |
dc.description.references | Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned navier-stokes method for two-phase flows with application to Cavitation prediction. Comput Fluids 29:849–875. https://doi.org/10.2514/6.1999-3329 | es_ES |
dc.description.references | Kunz RF, Stinebring DR, Chyczewski TS, Boger DA, Gibeling HJ, Govindan TR (1999) Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. In: FEDSM’99, 3rd ASME/JSME Joint Fluids Engineering Conference. San Francisco | es_ES |
dc.description.references | Li D, Kang Y, Ding X, Liu W (2017) Experimental study on the effects of feeding pipe diameter on the cavitation erosion performance of self-resonating cavitating waterjet. Exp Therm Fluid Sci 82:314–325. https://doi.org/10.1016/j.expthermflusci.2016.11.029 | es_ES |
dc.description.references | Li M, Yao J, Lan B, Sankin G, Zhou Y, Liu W, Xia J, Wang D, Trahey G, Zhong P (2020) Simultaneous photoacoustic imaging and cavitation mapping in Shockwave lithotripsy. IEEE Trans Med Imag 39(2):468–477. https://doi.org/10.1109/TMI.2019.2928740 | es_ES |
dc.description.references | Menter FR (1992) Improved two-equation k-ω turbulence models for aerodynamic flows. NASA Technical Memorandum 103975, pp 1–31 | es_ES |
dc.description.references | Morgut M, Nobile E, Biluš I (2011) Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil. Int J Multiph Flow 37(6):620–626. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.005 | es_ES |
dc.description.references | NIST: NIST Chemistry WebBook (2018). 10.18434/T4D303. https://doi.org/10.1615/AtomizSpr.20130058371 | es_ES |
dc.description.references | Obeid S, Jha R, Ahmadi G (2017) RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids. https://doi.org/10.3390/fluids2010002 | es_ES |
dc.description.references | Payri R, Gimeno J, Cuisano J, Arco J (2016) Hydraulic characterization of diesel engine single-hole injectors. Fuel 180:357–366. https://doi.org/10.1615/AtomizSpr.20130058372 | es_ES |
dc.description.references | Payri R, Gimeno J, Martí-Aldaraví P, Alarcón M (2017) A new approach to compute temperature in a liquid-gas mixture. application to study the effect of wall nozzle temperature on a Diesel injector. Int J Heat Fluid Flow 68:79–86. https://doi.org/10.1016/j.ijheatfluidflow.2016.12.008 | es_ES |
dc.description.references | Payri R, Gimeno J, Martí-Aldaraví P, Carreres M (2015) Assessment on Internal Nozzle Flow Initialization in Diesel Spray Simulations. SAE Technical Paper 2015-01-0921. https://doi.org/10.4271/2015-01-0921 | es_ES |
dc.description.references | Payri R, Salvador FJ, Gimeno J, De la Morena J (2009) Study of cavitation phenomena based on a technique for visualizing bubbles in a liquid pressurized chamber. Int J Heat Fluid Flow 30(4):768–777. https://doi.org/10.1016/j.ijheatfluidflow.2009.03.011 | es_ES |
dc.description.references | Payri R, Salvador FJ, Gimeno J, Venegas O (2013) Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Exp Therm Fluid Sci 44:235–244. https://doi.org/10.1016/j.expthermflusci.2012.06.013 | es_ES |
dc.description.references | Rachakonda SK, Wang Y, Grover RO, Moulai M, Baldwin E, Zhang G, Parrish S, Diwakar R, Kuo TW, Schmidt DP (2018) A computational approach to predict external spray characteristics for flashing and cavitating nozzles. Int J Multiph Flow 106:21–33. https://doi.org/10.1016/j.ijmultiphaseflow.2018.04.012 | es_ES |
dc.description.references | Ro S, Kim B, Park S, Kim YB, Choi B, Jung S, Lee DW (2020) Internal caviating flow and external spray behavior characteristics according to length-to-width ratio of transparent nozzle orifice. Int J Autom Technol 21(1):181–188. https://doi.org/10.1007/s12239-020-0018-7 | es_ES |
dc.description.references | Saha K, Som S, Battistoni M (2016) Parametric Study of HRM for Gasoline Sprays. ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI | es_ES |
dc.description.references | Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conv Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062 | es_ES |
dc.description.references | Salvador FJ, Gimeno J, Pastor JM, Martí-Aldaraví P (2014) Effect of turbulence model and inlet boundary condition on the diesel spray behavior simulated by an eulerian spray atomization (ESA) model. Int J Multiph Flow 65:108–116. https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.003 | es_ES |
dc.description.references | Schnerr G, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: ICMF-2001, 4th Internationl Conference on Multiphase Flow. New Orleans | es_ES |
dc.description.references | Shahangian N, Sharifian L, Uehara K, Noguchi Y, Martinez M, Marti-aldaravi P, Payri R (2020) Transient nozzle flow simulations of gasoline direct fuel injectors. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115356 | es_ES |
dc.description.references | Sandia National Laboratory: Engine Combustion Network (ECN) (2019). Retrieved from http://www.ecn.sandia.gov/ | es_ES |
dc.description.references | Torregrosa AJ, Payri R, Javier Salvador F, Crialesi-Esposito M (2020) Study of turbulence in atomizing liquid jets. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103328 | es_ES |
dc.description.references | Vallet A, Burluka AA, Borghi R (2001) Development of a eulerian model for the “atomization’’ of a liquid jet. Atom Sprays 11(6):619–642. https://doi.org/10.1002/fld.1650080906 | es_ES |
dc.description.references | Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill Education, New York | es_ES |
dc.description.references | Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12(6):620–631. https://doi.org/10.1063/1.168744 | es_ES |
dc.description.references | Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310. https://doi.org/10.2514/3.10041 | es_ES |
dc.description.references | Wilcox DC (2008) Formulation of the k-$$\omega$$ turbulence model revisited. AIAA J 46(11):2823–2838. https://doi.org/10.2514/1.36541 | es_ES |
dc.description.references | Winklhofer E, Kull E, Kelz E, Morozov A (2001) Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. In: ILASS-Europe. Zurich. https://doi.org/10.13140/2.1.1716.4161 | es_ES |
dc.description.references | Yu A, Luo X, Yang D, Zhou J (2018) Experimental and numerical study of ventilation cavitation around a NACA0015 hydrofoil with special emphasis on bubble evolution and air-vapor interactions. Eng Comput (Swansea, Wales) 35(3):1528–1542. https://doi.org/10.1108/EC-01-2017-0020 | es_ES |
dc.description.references | Yu A, Tang Q, Zhou D (2019) Cavitation evolution around a NACA0015 hydrofoil with different cavitation models based on level set method. Appl Sci 9:758–771. https://doi.org/10.3390/app9040758 | es_ES |
dc.description.references | Zhou H, Xiang M, Okolo PN, Wu Z, Bennett GJ, Zhang W (2019) An efficient calibration approach for cavitation model constants based on OpenFOAM platform. J Mar Sci Technol 24:1043–1056. https://doi.org/10.1007/s00773-018-0604-9 | es_ES |
dc.description.references | Zhou H, Xiang M, Zhao S, Zhang W (2019) Development of a multiphase cavitation solver and its application for ventilated cavitating flows with natural cavitation. Int J Multiph Flow 115:62–74. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.020 | es_ES |
dc.description.references | Zwart PJ, Gerber AG, Belamri T (2004) A two-phase flow model for predicting cavitation dynamics. In: ICMF 2004 International Conference on Multiphase Flow. Yokohama | es_ES |