- -

Analysis of vortex core generation in pipe flows under different reynolds number conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of vortex core generation in pipe flows under different reynolds number conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Carreres, Marcos es_ES
dc.contributor.author Quintero-Igeño, Pedro-Manuel es_ES
dc.contributor.author González-Montero, Lucas Antonio es_ES
dc.date.accessioned 2022-09-15T18:03:45Z
dc.date.available 2022-09-15T18:03:45Z
dc.date.issued 2021-06 es_ES
dc.identifier.issn 1678-5878 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186159
dc.description.abstract [EN] Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution using Large Eddy Simulations (LES). Features such as the mean velocity profiles and root mean squared velocity are first numerically investigated for different fluid properties involving Reynolds numbers ranging from 5,925 to 15,190 in order to verify the law-of-the-wall and turbulence statistics with experimental and DNS data. Once the simulations are validated, the vortex core generation within the flow is studied through a detection algorithm based on the lambda 2 criterion with two different approaches, first using an absolute threshold value and then using a relative threshold value depending on the turbulent intensity. Results are compared in terms of number of structures and Probability Density Functions for both the size and the radial distributions. Finally, results are compared for one condition with the Q-criterion to assess the results obtained resulting in practically identical volume and radial distributions. These results are deemed to shed light on the vortex formation and location to generate proper inflow boundary conditions to highly resolved simulations in varied engineering applications. es_ES
dc.description.sponsorship This research has been funded by the Spanish Ministerio de Economia y Competitividad through the project RTI2018099706-B-100: "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta resolucion" and the Spanish Ministerio de Ciencia e innovacion through the project EQC2018004605-P: "Estudio del proceso de inyeccion en atmosferas presurizadas". The authors thankfully acknowledge the computer resources from the Rigel cluster at UPV (Spain) and the Bebop cluster from the Laboratory Computing Resource Center at Argonne National Laboratory (USA). L.A. Gonzalez-Montero is partially supported through the contract FPI -Subprograma 2 of the Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational es_ES
dc.subject LES es_ES
dc.subject Pipe flow es_ES
dc.subject Turbulence es_ES
dc.subject Vortex detection es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Analysis of vortex core generation in pipe flows under different reynolds number conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s40430-021-03007-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-099706-B-I00//ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//EQC2018-004605-P//ESTUDIO DEL PROCESO DE INYECCION EN ATMOSFERAS PRESURIZADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Salvador, FJ.; Carreres, M.; Quintero-Igeño, P.; González-Montero, LA. (2021). Analysis of vortex core generation in pipe flows under different reynolds number conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(6):1-13. https://doi.org/10.1007/s40430-021-03007-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s40430-021-03007-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\440094 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge es_ES
dc.description.references Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711 es_ES
dc.description.references Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X es_ES
dc.description.references den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9:3398–3409. https://doi.org/10.1063/1.869451 es_ES
dc.description.references Zagarola MV, Smits AJ (1997) Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev Lett 78:239–242. https://doi.org/10.1103/PhysRevLett.78.239 es_ES
dc.description.references Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108:1–5. https://doi.org/10.1103/PhysRevLett.108.094501 es_ES
dc.description.references Talamelli A, Persiani F, H M Fransson J, Alfredsson PH, V Johansson A, M Nagib H, Rüedi J-D, R Sreenivasan K, A Monkewitz P (2009) CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn Res 41:021407. https://doi.org/10.1088/0169-5983/41/2/021407 es_ES
dc.description.references Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson PH (2017) Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0187 es_ES
dc.description.references Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892 es_ES
dc.description.references Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11:417–422. https://doi.org/10.1063/1.869889 es_ES
dc.description.references Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/S0022112008002085 es_ES
dc.description.references Wu X, Baltzer JR, Adrian RJ (2012) Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large-and very large-scale motions. J Fluid Mech 698:235–281. https://doi.org/10.1017/jfm.2012.81 es_ES
dc.description.references El Khoury GK, Schlatter P, Noorani A, Fischer PF, Brethouwer G, Johansson AV (2013) Direct numerical simulation of turbulent pipe flow at moderately high reynolds numbers. Flow, Turbul Combust 91:475–495. https://doi.org/10.1007/s10494-013-9482-8 es_ES
dc.description.references Chin C, Ooi ASH, Marusic I, Blackburn HM (2010) The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. https://doi.org/10.1063/1.3489528 es_ES
dc.description.references Klewicki J, Chin C, Blackburn HM, Ooi A, Marusic I (2012) Emergence of the four layer dynamical regime in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.3702897 es_ES
dc.description.references Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34. https://doi.org/10.1017/jfm.2012.324 es_ES
dc.description.references Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236. https://doi.org/10.1017/S0022112008002747 es_ES
dc.description.references Kim J (2012) Progress in pipe and channel flow turbulence, 1961–2011. J Turbul 13:N45. https://doi.org/10.1080/14685248.2012.726358 es_ES
dc.description.references Hellström LHO, Marusic I, Smits AJ (2016) Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/jfm.2016.100 es_ES
dc.description.references Abreu LI, Cavalieri AVG, Schlatter P, Vinuesa R, Henningson DS (2020) Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.445 es_ES
dc.description.references Hwang J, Sung HJ (2019) Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.5096433 es_ES
dc.description.references Dhamankar NS, Blaisdell GA, Lyrintzis AS (2018) Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J 56:1317–1334. https://doi.org/10.2514/1.J055528 es_ES
dc.description.references Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1 es_ES
dc.description.references Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiph Flow 33:510–524. https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001 es_ES
dc.description.references Bini M, Jones WP (2008) Large-eddy simulation of particle-laden turbulent flows. J Fluid Mech 614:207–252. https://doi.org/10.1017/S0022112008003443 es_ES
dc.description.references Payri R, Salvador FJ, Gimeno J, Crialesi-Esposito M (2019) Comparison of mapped and synthetic inflow boundary conditions in Direct Numerical Simulation of sprays. In: ILASS - Europe 2019, 29th conference on liquid atomization and spray systems, 2–4 Sept 2019, Paris, France es_ES
dc.description.references Warncke K, Gepperth S, Sauer B, Sadiki A, Janicka J, Koch R, Bauer HJ (2017) Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. Int J Multiph Flow 91:208–224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010 es_ES
dc.description.references Engine Combustion Network (ECN) (2010) Available at https://ecn.sandia.gov/. Accessed 12 May 2021 es_ES
dc.description.references Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001 es_ES
dc.description.references Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65. https://doi.org/10.1016/0021-9991(86)90099-9 es_ES
dc.description.references The OpenFOAM Foundation (2015) OpenFOAM v3.0.0 User Guide. Available at https://openfoam.org/version/3-0-0/https://openfoam.org/version/3-0-0/. Accessed 12 May 2021 es_ES
dc.description.references Jeong J, Hussain F, Jinhee J, Fazle H (1995) On the identification of a vortex. J Fluid Mech 285:69–94. https://doi.org/10.1017/S0022112095000462 es_ES
dc.description.references Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, pp 193–208 (SEE N89-24538 18-34) es_ES
dc.description.references Pope S (2009) Turbulent Flows, sixth. Cambridge University Press es_ES
dc.description.references Sagaut P (2006) Large Eddy simulation for incompressible flows: an introduction. Springer, Berlin, Heidelberg. ISBN 978-3-540-26403-3. https://doi.org/10.1007/b137536 es_ES
dc.description.references Celik I, Klein M, Janicka J (2009) Assessment measures for engineering LES applications. J Fluids Eng Trans ASME 131:0311021–03110210. https://doi.org/10.1115/1.3059703 es_ES
dc.description.references Wagner C, Hüttl T, Friedrich R (2001) Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput Fluids 30:581–590. https://doi.org/10.1016/S0045-7930(01)00007-X es_ES
dc.description.references Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids. https://doi.org/10.1063/1.3006423 es_ES
dc.description.references Moody L, Princeton N (1944) Friction Factors for Pipe Flow. Trans ASME 66:671–684 es_ES
dc.description.references Hasslberger J, Ketterl S, Klein M, Chakraborty N (2019) Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech 859:819–838. https://doi.org/10.1017/jfm.2018.845 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem