Mostrar el registro sencillo del ítem
dc.contributor.author | Salvador, Francisco Javier | es_ES |
dc.contributor.author | Carreres, Marcos | es_ES |
dc.contributor.author | Quintero-Igeño, Pedro-Manuel | es_ES |
dc.contributor.author | González-Montero, Lucas Antonio | es_ES |
dc.date.accessioned | 2022-09-15T18:03:45Z | |
dc.date.available | 2022-09-15T18:03:45Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 1678-5878 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186159 | |
dc.description.abstract | [EN] Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution using Large Eddy Simulations (LES). Features such as the mean velocity profiles and root mean squared velocity are first numerically investigated for different fluid properties involving Reynolds numbers ranging from 5,925 to 15,190 in order to verify the law-of-the-wall and turbulence statistics with experimental and DNS data. Once the simulations are validated, the vortex core generation within the flow is studied through a detection algorithm based on the lambda 2 criterion with two different approaches, first using an absolute threshold value and then using a relative threshold value depending on the turbulent intensity. Results are compared in terms of number of structures and Probability Density Functions for both the size and the radial distributions. Finally, results are compared for one condition with the Q-criterion to assess the results obtained resulting in practically identical volume and radial distributions. These results are deemed to shed light on the vortex formation and location to generate proper inflow boundary conditions to highly resolved simulations in varied engineering applications. | es_ES |
dc.description.sponsorship | This research has been funded by the Spanish Ministerio de Economia y Competitividad through the project RTI2018099706-B-100: "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta resolucion" and the Spanish Ministerio de Ciencia e innovacion through the project EQC2018004605-P: "Estudio del proceso de inyeccion en atmosferas presurizadas". The authors thankfully acknowledge the computer resources from the Rigel cluster at UPV (Spain) and the Bebop cluster from the Laboratory Computing Resource Center at Argonne National Laboratory (USA). L.A. Gonzalez-Montero is partially supported through the contract FPI -Subprograma 2 of the Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computational | es_ES |
dc.subject | LES | es_ES |
dc.subject | Pipe flow | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Vortex detection | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Analysis of vortex core generation in pipe flows under different reynolds number conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s40430-021-03007-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTI2018-099706-B-I00//ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//EQC2018-004605-P//ESTUDIO DEL PROCESO DE INYECCION EN ATMOSFERAS PRESURIZADAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Salvador, FJ.; Carreres, M.; Quintero-Igeño, P.; González-Montero, LA. (2021). Analysis of vortex core generation in pipe flows under different reynolds number conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(6):1-13. https://doi.org/10.1007/s40430-021-03007-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s40430-021-03007-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\440094 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711 | es_ES |
dc.description.references | Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X | es_ES |
dc.description.references | den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9:3398–3409. https://doi.org/10.1063/1.869451 | es_ES |
dc.description.references | Zagarola MV, Smits AJ (1997) Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev Lett 78:239–242. https://doi.org/10.1103/PhysRevLett.78.239 | es_ES |
dc.description.references | Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108:1–5. https://doi.org/10.1103/PhysRevLett.108.094501 | es_ES |
dc.description.references | Talamelli A, Persiani F, H M Fransson J, Alfredsson PH, V Johansson A, M Nagib H, Rüedi J-D, R Sreenivasan K, A Monkewitz P (2009) CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn Res 41:021407. https://doi.org/10.1088/0169-5983/41/2/021407 | es_ES |
dc.description.references | Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson PH (2017) Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0187 | es_ES |
dc.description.references | Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892 | es_ES |
dc.description.references | Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11:417–422. https://doi.org/10.1063/1.869889 | es_ES |
dc.description.references | Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/S0022112008002085 | es_ES |
dc.description.references | Wu X, Baltzer JR, Adrian RJ (2012) Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large-and very large-scale motions. J Fluid Mech 698:235–281. https://doi.org/10.1017/jfm.2012.81 | es_ES |
dc.description.references | El Khoury GK, Schlatter P, Noorani A, Fischer PF, Brethouwer G, Johansson AV (2013) Direct numerical simulation of turbulent pipe flow at moderately high reynolds numbers. Flow, Turbul Combust 91:475–495. https://doi.org/10.1007/s10494-013-9482-8 | es_ES |
dc.description.references | Chin C, Ooi ASH, Marusic I, Blackburn HM (2010) The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. https://doi.org/10.1063/1.3489528 | es_ES |
dc.description.references | Klewicki J, Chin C, Blackburn HM, Ooi A, Marusic I (2012) Emergence of the four layer dynamical regime in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.3702897 | es_ES |
dc.description.references | Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34. https://doi.org/10.1017/jfm.2012.324 | es_ES |
dc.description.references | Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236. https://doi.org/10.1017/S0022112008002747 | es_ES |
dc.description.references | Kim J (2012) Progress in pipe and channel flow turbulence, 1961–2011. J Turbul 13:N45. https://doi.org/10.1080/14685248.2012.726358 | es_ES |
dc.description.references | Hellström LHO, Marusic I, Smits AJ (2016) Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/jfm.2016.100 | es_ES |
dc.description.references | Abreu LI, Cavalieri AVG, Schlatter P, Vinuesa R, Henningson DS (2020) Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.445 | es_ES |
dc.description.references | Hwang J, Sung HJ (2019) Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.5096433 | es_ES |
dc.description.references | Dhamankar NS, Blaisdell GA, Lyrintzis AS (2018) Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J 56:1317–1334. https://doi.org/10.2514/1.J055528 | es_ES |
dc.description.references | Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1 | es_ES |
dc.description.references | Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiph Flow 33:510–524. https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001 | es_ES |
dc.description.references | Bini M, Jones WP (2008) Large-eddy simulation of particle-laden turbulent flows. J Fluid Mech 614:207–252. https://doi.org/10.1017/S0022112008003443 | es_ES |
dc.description.references | Payri R, Salvador FJ, Gimeno J, Crialesi-Esposito M (2019) Comparison of mapped and synthetic inflow boundary conditions in Direct Numerical Simulation of sprays. In: ILASS - Europe 2019, 29th conference on liquid atomization and spray systems, 2–4 Sept 2019, Paris, France | es_ES |
dc.description.references | Warncke K, Gepperth S, Sauer B, Sadiki A, Janicka J, Koch R, Bauer HJ (2017) Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. Int J Multiph Flow 91:208–224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010 | es_ES |
dc.description.references | Engine Combustion Network (ECN) (2010) Available at https://ecn.sandia.gov/. Accessed 12 May 2021 | es_ES |
dc.description.references | Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001 | es_ES |
dc.description.references | Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65. https://doi.org/10.1016/0021-9991(86)90099-9 | es_ES |
dc.description.references | The OpenFOAM Foundation (2015) OpenFOAM v3.0.0 User Guide. Available at https://openfoam.org/version/3-0-0/https://openfoam.org/version/3-0-0/. Accessed 12 May 2021 | es_ES |
dc.description.references | Jeong J, Hussain F, Jinhee J, Fazle H (1995) On the identification of a vortex. J Fluid Mech 285:69–94. https://doi.org/10.1017/S0022112095000462 | es_ES |
dc.description.references | Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, pp 193–208 (SEE N89-24538 18-34) | es_ES |
dc.description.references | Pope S (2009) Turbulent Flows, sixth. Cambridge University Press | es_ES |
dc.description.references | Sagaut P (2006) Large Eddy simulation for incompressible flows: an introduction. Springer, Berlin, Heidelberg. ISBN 978-3-540-26403-3. https://doi.org/10.1007/b137536 | es_ES |
dc.description.references | Celik I, Klein M, Janicka J (2009) Assessment measures for engineering LES applications. J Fluids Eng Trans ASME 131:0311021–03110210. https://doi.org/10.1115/1.3059703 | es_ES |
dc.description.references | Wagner C, Hüttl T, Friedrich R (2001) Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput Fluids 30:581–590. https://doi.org/10.1016/S0045-7930(01)00007-X | es_ES |
dc.description.references | Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids. https://doi.org/10.1063/1.3006423 | es_ES |
dc.description.references | Moody L, Princeton N (1944) Friction Factors for Pipe Flow. Trans ASME 66:671–684 | es_ES |
dc.description.references | Hasslberger J, Ketterl S, Klein M, Chakraborty N (2019) Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech 859:819–838. https://doi.org/10.1017/jfm.2018.845 | es_ES |