Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge
Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711
Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X
[+]
Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge
Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711
Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X
den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9:3398–3409. https://doi.org/10.1063/1.869451
Zagarola MV, Smits AJ (1997) Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev Lett 78:239–242. https://doi.org/10.1103/PhysRevLett.78.239
Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108:1–5. https://doi.org/10.1103/PhysRevLett.108.094501
Talamelli A, Persiani F, H M Fransson J, Alfredsson PH, V Johansson A, M Nagib H, Rüedi J-D, R Sreenivasan K, A Monkewitz P (2009) CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn Res 41:021407. https://doi.org/10.1088/0169-5983/41/2/021407
Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson PH (2017) Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0187
Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892
Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11:417–422. https://doi.org/10.1063/1.869889
Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/S0022112008002085
Wu X, Baltzer JR, Adrian RJ (2012) Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large-and very large-scale motions. J Fluid Mech 698:235–281. https://doi.org/10.1017/jfm.2012.81
El Khoury GK, Schlatter P, Noorani A, Fischer PF, Brethouwer G, Johansson AV (2013) Direct numerical simulation of turbulent pipe flow at moderately high reynolds numbers. Flow, Turbul Combust 91:475–495. https://doi.org/10.1007/s10494-013-9482-8
Chin C, Ooi ASH, Marusic I, Blackburn HM (2010) The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. https://doi.org/10.1063/1.3489528
Klewicki J, Chin C, Blackburn HM, Ooi A, Marusic I (2012) Emergence of the four layer dynamical regime in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.3702897
Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34. https://doi.org/10.1017/jfm.2012.324
Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236. https://doi.org/10.1017/S0022112008002747
Kim J (2012) Progress in pipe and channel flow turbulence, 1961–2011. J Turbul 13:N45. https://doi.org/10.1080/14685248.2012.726358
Hellström LHO, Marusic I, Smits AJ (2016) Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/jfm.2016.100
Abreu LI, Cavalieri AVG, Schlatter P, Vinuesa R, Henningson DS (2020) Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.445
Hwang J, Sung HJ (2019) Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.5096433
Dhamankar NS, Blaisdell GA, Lyrintzis AS (2018) Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J 56:1317–1334. https://doi.org/10.2514/1.J055528
Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1
Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiph Flow 33:510–524. https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001
Bini M, Jones WP (2008) Large-eddy simulation of particle-laden turbulent flows. J Fluid Mech 614:207–252. https://doi.org/10.1017/S0022112008003443
Payri R, Salvador FJ, Gimeno J, Crialesi-Esposito M (2019) Comparison of mapped and synthetic inflow boundary conditions in Direct Numerical Simulation of sprays. In: ILASS - Europe 2019, 29th conference on liquid atomization and spray systems, 2–4 Sept 2019, Paris, France
Warncke K, Gepperth S, Sauer B, Sadiki A, Janicka J, Koch R, Bauer HJ (2017) Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. Int J Multiph Flow 91:208–224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010
Engine Combustion Network (ECN) (2010) Available at https://ecn.sandia.gov/. Accessed 12 May 2021
Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001
Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65. https://doi.org/10.1016/0021-9991(86)90099-9
The OpenFOAM Foundation (2015) OpenFOAM v3.0.0 User Guide. Available at https://openfoam.org/version/3-0-0/https://openfoam.org/version/3-0-0/. Accessed 12 May 2021
Jeong J, Hussain F, Jinhee J, Fazle H (1995) On the identification of a vortex. J Fluid Mech 285:69–94. https://doi.org/10.1017/S0022112095000462
Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, pp 193–208 (SEE N89-24538 18-34)
Pope S (2009) Turbulent Flows, sixth. Cambridge University Press
Sagaut P (2006) Large Eddy simulation for incompressible flows: an introduction. Springer, Berlin, Heidelberg. ISBN 978-3-540-26403-3. https://doi.org/10.1007/b137536
Celik I, Klein M, Janicka J (2009) Assessment measures for engineering LES applications. J Fluids Eng Trans ASME 131:0311021–03110210. https://doi.org/10.1115/1.3059703
Wagner C, Hüttl T, Friedrich R (2001) Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput Fluids 30:581–590. https://doi.org/10.1016/S0045-7930(01)00007-X
Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids. https://doi.org/10.1063/1.3006423
Moody L, Princeton N (1944) Friction Factors for Pipe Flow. Trans ASME 66:671–684
Hasslberger J, Ketterl S, Klein M, Chakraborty N (2019) Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech 859:819–838. https://doi.org/10.1017/jfm.2018.845
[-]