- -

Analysis of vortex core generation in pipe flows under different reynolds number conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of vortex core generation in pipe flows under different reynolds number conditions

Mostrar el registro completo del ítem

Salvador, FJ.; Carreres, M.; Quintero-Igeño, P.; González-Montero, LA. (2021). Analysis of vortex core generation in pipe flows under different reynolds number conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 43(6):1-13. https://doi.org/10.1007/s40430-021-03007-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186159

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of vortex core generation in pipe flows under different reynolds number conditions
Autor: Salvador, Francisco Javier Carreres, Marcos Quintero-Igeño, Pedro-Manuel González-Montero, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Pipe flow is a well-documented case widely studied in both theoretical and practical applications. The present work aims at studying the influence of the Reynolds number on turbulent vortex distribution using Large ...[+]
Palabras clave: Computational , LES , Pipe flow , Turbulence , Vortex detection
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Brazilian Society of Mechanical Sciences and Engineering. (issn: 1678-5878 )
DOI: 10.1007/s40430-021-03007-3
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s40430-021-03007-3
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/
info:eu-repo/grantAgreement/AEI//RTI2018-099706-B-I00//ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/
info:eu-repo/grantAgreement/MCIU//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS//ESTUDIO DEL PROCESO DE INYECCIÓN EN ATMOSFERAS PRESURIZADAS/
info:eu-repo/grantAgreement/AEI//EQC2018-004605-P//ESTUDIO DEL PROCESO DE INYECCION EN ATMOSFERAS PRESURIZADAS/
Agradecimientos:
This research has been funded by the Spanish Ministerio de Economia y Competitividad through the project RTI2018099706-B-100: "Estudio de la atomizacion primaria mediante simulaciones DNS y tecnicas opticas de muy alta ...[+]
Tipo: Artículo

References

Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711

Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X [+]
Townsend AA (1980) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge

Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys Fluids 22:1–24. https://doi.org/10.1063/1.3453711

Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (2006) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–210. https://doi.org/10.1017/S002211209400131X

den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9:3398–3409. https://doi.org/10.1063/1.869451

Zagarola MV, Smits AJ (1997) Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev Lett 78:239–242. https://doi.org/10.1103/PhysRevLett.78.239

Hultmark M, Vallikivi M, Bailey SCC, Smits AJ (2012) Turbulent pipe flow at extreme reynolds numbers. Phys Rev Lett 108:1–5. https://doi.org/10.1103/PhysRevLett.108.094501

Talamelli A, Persiani F, H M Fransson J, Alfredsson PH, V Johansson A, M Nagib H, Rüedi J-D, R Sreenivasan K, A Monkewitz P (2009) CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn Res 41:021407. https://doi.org/10.1088/0169-5983/41/2/021407

Örlü R, Fiorini T, Segalini A, Bellani G, Talamelli A, Alfredsson PH (2017) Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2016.0187

Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166. https://doi.org/10.1017/S0022112087000892

Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11:417–422. https://doi.org/10.1063/1.869889

Wu X, Moin P (2008) A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/S0022112008002085

Wu X, Baltzer JR, Adrian RJ (2012) Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large-and very large-scale motions. J Fluid Mech 698:235–281. https://doi.org/10.1017/jfm.2012.81

El Khoury GK, Schlatter P, Noorani A, Fischer PF, Brethouwer G, Johansson AV (2013) Direct numerical simulation of turbulent pipe flow at moderately high reynolds numbers. Flow, Turbul Combust 91:475–495. https://doi.org/10.1007/s10494-013-9482-8

Chin C, Ooi ASH, Marusic I, Blackburn HM (2010) The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys Fluids. https://doi.org/10.1063/1.3489528

Klewicki J, Chin C, Blackburn HM, Ooi A, Marusic I (2012) Emergence of the four layer dynamical regime in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.3702897

Schlatter P, Örlü R (2012) Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J Fluid Mech 710:5–34. https://doi.org/10.1017/jfm.2012.324

Jiménez J, Hoyas S (2008) Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech 611:215–236. https://doi.org/10.1017/S0022112008002747

Kim J (2012) Progress in pipe and channel flow turbulence, 1961–2011. J Turbul 13:N45. https://doi.org/10.1080/14685248.2012.726358

Hellström LHO, Marusic I, Smits AJ (2016) Self-similarity of the large-scale motions in turbulent pipe flow. J Fluid Mech. https://doi.org/10.1017/jfm.2016.100

Abreu LI, Cavalieri AVG, Schlatter P, Vinuesa R, Henningson DS (2020) Spectral proper orthogonal decomposition and resolvent analysis of near-wall coherent structures in turbulent pipe flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.445

Hwang J, Sung HJ (2019) Wall-attached clusters for the logarithmic velocity law in turbulent pipe flow. Phys Fluids. https://doi.org/10.1063/1.5096433

Dhamankar NS, Blaisdell GA, Lyrintzis AS (2018) Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J 56:1317–1334. https://doi.org/10.2514/1.J055528

Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1

Ménard T, Tanguy S, Berlemont A (2007) Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiph Flow 33:510–524. https://doi.org/10.1016/j.ijmultiphaseflow.2006.11.001

Bini M, Jones WP (2008) Large-eddy simulation of particle-laden turbulent flows. J Fluid Mech 614:207–252. https://doi.org/10.1017/S0022112008003443

Payri R, Salvador FJ, Gimeno J, Crialesi-Esposito M (2019) Comparison of mapped and synthetic inflow boundary conditions in Direct Numerical Simulation of sprays. In: ILASS - Europe 2019, 29th conference on liquid atomization and spray systems, 2–4 Sept 2019, Paris, France

Warncke K, Gepperth S, Sauer B, Sadiki A, Janicka J, Koch R, Bauer HJ (2017) Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. Int J Multiph Flow 91:208–224. https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.010

Engine Combustion Network (ECN) (2010) Available at https://ecn.sandia.gov/. Accessed 12 May 2021

Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001

Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65. https://doi.org/10.1016/0021-9991(86)90099-9

The OpenFOAM Foundation (2015) OpenFOAM v3.0.0 User Guide. Available at https://openfoam.org/version/3-0-0/https://openfoam.org/version/3-0-0/. Accessed 12 May 2021

Jeong J, Hussain F, Jinhee J, Fazle H (1995) On the identification of a vortex. J Fluid Mech 285:69–94. https://doi.org/10.1017/S0022112095000462

Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, pp 193–208 (SEE N89-24538 18-34)

Pope S (2009) Turbulent Flows, sixth. Cambridge University Press

Sagaut P (2006) Large Eddy simulation for incompressible flows: an introduction. Springer, Berlin, Heidelberg. ISBN 978-3-540-26403-3. https://doi.org/10.1007/b137536

Celik I, Klein M, Janicka J (2009) Assessment measures for engineering LES applications. J Fluids Eng Trans ASME 131:0311021–03110210. https://doi.org/10.1115/1.3059703

Wagner C, Hüttl T, Friedrich R (2001) Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput Fluids 30:581–590. https://doi.org/10.1016/S0045-7930(01)00007-X

Nagib HM, Chauhan KA (2008) Variations of von Kármán coefficient in canonical flows. Phys Fluids. https://doi.org/10.1063/1.3006423

Moody L, Princeton N (1944) Friction Factors for Pipe Flow. Trans ASME 66:671–684

Hasslberger J, Ketterl S, Klein M, Chakraborty N (2019) Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech 859:819–838. https://doi.org/10.1017/jfm.2018.845

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem