- -

Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper

Mostrar el registro completo del ítem

Morales-Manzo, I.; Rodríguez Burruezo, A.; Jiménez-Perez, M.; Luna-Ruiz, JJ.; San Bautista Primo, A.; Fita, A. (2021). Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 49(2):1-13. https://doi.org/10.15835/nbha49212354

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186163

Ficheros en el ítem

Metadatos del ítem

Título: Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper
Autor: Morales-Manzo, Ivan-Ilich Rodríguez Burruezo, Adrián Jiménez-Perez, Marisa Luna-Ruiz, Jose J. San Bautista Primo, Alberto Fita, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Fecha difusión:
Resumen:
[EN] Peppers, a worldwide crop, are threatened by different pathogens. Powdery mildew, a biotroph fungal infection, can cause several damages directly on vegetative parts and indirectly on fruits. Despite some sources of ...[+]
Palabras clave: Chiltepin , High tolerance , Oidium , Chlorosis , Complex control resistance , Screening
Derechos de uso: Reconocimiento (by)
Fuente:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca. (issn: 0255-965X )
DOI: 10.15835/nbha49212354
Editorial:
AcademicPres (EAP) Publishing House
Versión del editor: https://doi.org/10.15835/nbha49212354
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110221RR-C32/ES/DESARROLLO DE ECOTIPOS MEJORADOS DE PIMIENTO (CAPSICUM ANNUUM L.) DE ALTA CALIDAD Y RESISTENTES A ENFERMEDADES ADAPTADOS A CULTIVO ECOLOGICO EN EL SUDESTE ESPAÑOL/
info:eu-repo/grantAgreement/CONACYT//47274/
info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/
Agradecimientos:
IIMM acknowledges his work was supported by CONACYT-CONCYTEP predoctoral scholarship number 47274 by the Mexican government. This work has been partially financed by the projects RTA2014-00041-C02-02 y PID2019110221RRC32, ...[+]
Tipo: Artículo

References

Aguilar‐Meléndez A, Morrell PL, Roose ML, Kim SC (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany 96(6):1190-1202. https://doi.org/10.3732/ajb.0800155

Albert R, Künstler A, Lantos F, Adám AL (2017). Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiologiae Plantarum 39:53. https://doi.org/10.1007/s11738-017-2353-5

Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003). QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Molecular Plant-Microbe Interactions 16(2):169-176. https://doi.org/10.1094/MPMI.2003.16.2.169 [+]
Aguilar‐Meléndez A, Morrell PL, Roose ML, Kim SC (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany 96(6):1190-1202. https://doi.org/10.3732/ajb.0800155

Albert R, Künstler A, Lantos F, Adám AL (2017). Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiologiae Plantarum 39:53. https://doi.org/10.1007/s11738-017-2353-5

Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003). QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Molecular Plant-Microbe Interactions 16(2):169-176. https://doi.org/10.1094/MPMI.2003.16.2.169

Blat SF, da Costa CP, Vencovsky R, Sala FC (2005). Inheritance of reaction to Leveillula taurica (Lev.) Arn. in Capsicum annuum L. Scientia Agricola 62(1):40-44. https://doi.org/10.1590/S0103-90162005000100008

Blat SF, da Costa CP, Vencovsky R, Sala FC (2006). Hot pepper (Capsicum chinense, Jacq.) inheritance of reaction to powdery mildew. Scientia Agricola 63(5):471-474. https://doi.org/10.1590/S0103-90162006000500008

Daubeze AM, Hennart JW, Palloix A (1995). Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breeding 114:327-332. https://doi.org/10.1111/j.1439-0523.1995.tb01243.x

de Souza VL, Café-Filho AC (2003). Resistance to Leveillula taurica in the genus Capsicum. Plant Pathology 52:613-619. https://doi.org/10.1046/j.1365-3059.2003.00920.x

Eggink PM, D’hoop BB, Brouwer M, and Deniau AX (2016). Resistance against Leveillula taurica in Pepper. U.S. Patent No 9, 351, 451. Washington, DC: U.S. Patent and Trademark Office.

Elad Y, Messika Y, Brand M, David DR, Sztejnberg A (2007). Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology 97(7):813-824. https://doi.org/10.1094/PHYTO-97-7-0813

FAOSTAT (2021). Statistic division, Food and Agriculture Organization of the United Nations. Rome, Italy. Retrieved 2021 March 01 from http://www.fao.org/faostat/

Gabor BK, Just BJ, Huang C, Jones CM, Vreugdenhil D, Kniskern JM, … Xiang W (2017). Methods and compositions for producing Capsicum plants with powdery mildew resistance. U.S. Patent No 9,689,045. Washington, DC: U.S. Patent and Trademark Office.

Hayano‐Kanashiro C, Gámez‐Meza N, Medina‐Juárez LÁ (2016). Wild pepper Capsicum annuum L. var. glabriusculum: Taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Science 56(1):1-11. https://doi.org/10.2135/cropsci2014.11.0789

Hoshmand R (2020). Design of experiments for agriculture and the natural sciences (2nd edition). Chapman and Hall/CRC.

Jo J, Venkatesh J, Han K, Lee HY, Choi GJ, Lee HJ, Choi D, Kang BC (2017). Molecular mapping of PMR1, a novel locus conferring resistance to powdery mildew in pepper (Capsicum annuum). Frontiers in Plant Science 8: 2090. https://doi.org/10.3389/fpls.2017.02090

Kim DS, Hwang BK (2012). The pepper MLO gene, CaMlo2, is involved in susceptibility cell death response and bacterial and oomycete proliferation. The Plant Journal 72:843-855. https://doi.org/10.1111/tpj.12003

Kono A, Ban Y, Mitani N, Fujii H, Sato S, Suzaki K, … Sato A (2018). Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Molecular Breeding 38:138. https://doi.org/10.1007/s11032-018-0889-8

Kraft KH, Luna-Ruíz J, Gepts P (2013). A new collection of wild populations of Capsicum in Mexico and the southern United States. Genetic Resources and Crop Evolution 60(1):225-232. https://link.springer.com/article/10.1007/s10722-012-9827-5

Lee OH, Hwang HS, Kim JY, Han JH, Yoo YS, Kim BS (2001). A search for sources of resistance to powdery mildew (Leveillula taurica (Lév.) Arn) in pepper (Capsicum spp.). Korean Journal of Horticultural Science and Technology 19(1):7-11.

Lefebvre V, Daubèze AM, Rouppe van der Voort J, Peleman J, Bardin M, Palloix A (2003). QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theoretical and Applied Genetics 107:661-666.

Lin K, Gong L, Huang Y, Liu C, Pan J (2019). Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in Plant Sciences 10:155. https://doi.org/10.3389/fpls.2019.00155

Luna-Ruiz JdJ, Pérez-Chávez MS, Martínez-de-Anda JA, Sosa-Ramírez J (2018). Distribución ecogeográfica del chile silvestre en México y su conservación ex situ. In: Aguilar-Meléndez A, Vásquez-Dávila MA, Katz E, Hernández-Colorado MR (Eds). Los chiles que le dan sabor al mundo. IRD Éditions. https://doi.org/10.4000/books.irdeditions.30934

Manzur JP, Fita A, Prohens J, Rodríguez-Burruezo A (2015). Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated ají (C. baccatum) accessions as donor parents. PLoS One 10:12. https://doi.org/10.1371/journal.pone.0144142

McCoy JE, Bosland PW (2019). Identification of resistance to powdery mildew in Chile pepper. HortScience 54(1):4-7. https://doi.org/10.21273/HORTSCI13596-18

Molot PM, Leroux JP, Diop-Bruckler M (1990). Leveillula taurica (Lév) Arn: cultures axéniques, biologie et spécificité parasitaire [Leveillula taruica (Lév) Arn: axenic cultures, biology and parasite specificity]. Agronomie 10(7):551-559. https://hal.archives-ouvertes.fr/hal-00885316

Molot PM, Leroux JP, Ferriere H (1987). Les oÏdiums des cucurbitacées. II. Mise au point d’une technique de conservation des souches en culture axénique [Powdery mildew of cucurbits. II. Development of a technique for the conservation of strains in axenic culture]. Agronomie 7(5):339-343. https://hal.archives-ouvertes.fr/hal-00884999

Özer N, Kün A, İlbi H (2018). Detached leaf test for evaluation of resistance to powdery mildew in pepper. Agricultural Research & Technology 14:3. https://doi.org/10.19080/ARTOAJ.2018.14.555923

Parisi M, Alioto D, Tripodi P (2020). Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences 21(7):2587. https://doi.org/10.3390/ijms21072587

Pereira-Dias L, Vilanova S, Fita A, Prohens J, Rodríguez-Burruezo A (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish center of diversity revealed by genotyping-by-sequencing. Horticulture Research 6:54. https://doi.org/10.1038/s41438-019-0132-8

Robbins MGL, Hoffmann DRT, Wang FV (2017). Anticarcinogenic flavonoids in different fruits commonly consumed. Plant Sciences Journal 40:2379-2383.

Sudha A, Lakshmanan P (2009). Integrated disease management of powdery mildew (Leveillula taurica (Lev.) Arn.) of chilli (Capsicum annuum L.). Archives of Phytopathology and Plant Protection 42:299-317. https://doi.org/10.1080/03235400601037198

Zheng Z (2012). Exploration of MLO-based resistance in vegetable crops. PhD Thesis, Wageningen University, Netherlands.

Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, … Bai Y (2013). Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103:623-632. https://doi.org/10.1094/PHYTO-08-12-0198-R

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem