- -

Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales-Manzo, Ivan-Ilich es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Jiménez-Perez, Marisa es_ES
dc.contributor.author Luna-Ruiz, Jose J. es_ES
dc.contributor.author San Bautista Primo, Alberto es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2022-09-15T18:03:52Z
dc.date.available 2022-09-15T18:03:52Z
dc.date.issued 2021 es_ES
dc.identifier.issn 0255-965X es_ES
dc.identifier.uri http://hdl.handle.net/10251/186163
dc.description.abstract [EN] Peppers, a worldwide crop, are threatened by different pathogens. Powdery mildew, a biotroph fungal infection, can cause several damages directly on vegetative parts and indirectly on fruits. Despite some sources of resistance have been described, commercial genotypes only with partial resistance have been developed due to the complex nature of such resistance and variable genetic expression, which depends on the stage of the plants. In this paper 49 accessions from different Capsicum species and origins have been tested. Plants were grown in growth chambers inside of mini greenhouses. Repeated inoculations under pepper leaves were applied by spraying a suspension of 104 conidia ml-1. Readings were made at 30 and 60 days after inoculation (DAI). Total number of leaves (TL), total number of affected leaves (LA), and maximum area affected (MAA) in the most damaged leaf were scored. In addition, a composite infection index (CII) was calculated on the basis of the three mentioned traits. Inoculated plants showed more severe symptoms at 30 DAI than at 60 DAI. Different response patterns were observed: from accessions suffering high leaf shedding to some others with local hypersensitive response, indicating different gene action. The use of CII prevented species bias and disease response. In the present work, four highly tolerant accessions were identified, including two chiltepins, C. annuum wild relatives, Ag-01 and Ag-02, and two C. annuum A-06 and A-23. es_ES
dc.description.sponsorship IIMM acknowledges his work was supported by CONACYT-CONCYTEP predoctoral scholarship number 47274 by the Mexican government. This work has been partially financed by the projects RTA2014-00041-C02-02 y PID2019110221RRC32, from Spain's Plan Nacional, INIA and FEDER/ERDF funds. es_ES
dc.language Inglés es_ES
dc.publisher AcademicPres (EAP) Publishing House es_ES
dc.relation.ispartof Notulae Botanicae Horti Agrobotanici Cluj-Napoca es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chiltepin es_ES
dc.subject High tolerance es_ES
dc.subject Oidium es_ES
dc.subject Chlorosis es_ES
dc.subject Complex control resistance es_ES
dc.subject Screening es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification GENETICA es_ES
dc.title Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.15835/nbha49212354 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110221RR-C32/ES/DESARROLLO DE ECOTIPOS MEJORADOS DE PIMIENTO (CAPSICUM ANNUUM L.) DE ALTA CALIDAD Y RESISTENTES A ENFERMEDADES ADAPTADOS A CULTIVO ECOLOGICO EN EL SUDESTE ESPAÑOL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//47274/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Morales-Manzo, I.; Rodríguez Burruezo, A.; Jiménez-Perez, M.; Luna-Ruiz, JJ.; San Bautista Primo, A.; Fita, A. (2021). Novel sources of resistance to powdery mildew (Leveillula taurica(Lév.) Arnaud) in pepper. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 49(2):1-13. https://doi.org/10.15835/nbha49212354 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.15835/nbha49212354 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\441387 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder INSTITUTO NACIONAL DE INV. Y TECNOL. AGRARIA Y ALIMENTARIA es_ES
dc.description.references Aguilar‐Meléndez A, Morrell PL, Roose ML, Kim SC (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany 96(6):1190-1202. https://doi.org/10.3732/ajb.0800155 es_ES
dc.description.references Albert R, Künstler A, Lantos F, Adám AL (2017). Graft-transmissible resistance of cherry pepper (Capsicum annuum var. cerasiforme) to powdery mildew (Leveillula taurica) is associated with elevated superoxide accumulation, NADPH oxidase activity and pathogenesis-related gene expression. Acta Physiologiae Plantarum 39:53. https://doi.org/10.1007/s11738-017-2353-5 es_ES
dc.description.references Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003). QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Molecular Plant-Microbe Interactions 16(2):169-176. https://doi.org/10.1094/MPMI.2003.16.2.169 es_ES
dc.description.references Blat SF, da Costa CP, Vencovsky R, Sala FC (2005). Inheritance of reaction to Leveillula taurica (Lev.) Arn. in Capsicum annuum L. Scientia Agricola 62(1):40-44. https://doi.org/10.1590/S0103-90162005000100008 es_ES
dc.description.references Blat SF, da Costa CP, Vencovsky R, Sala FC (2006). Hot pepper (Capsicum chinense, Jacq.) inheritance of reaction to powdery mildew. Scientia Agricola 63(5):471-474. https://doi.org/10.1590/S0103-90162006000500008 es_ES
dc.description.references Daubeze AM, Hennart JW, Palloix A (1995). Resistance to Leveillula taurica in pepper (Capsicum annuum) is oligogenically controlled and stable in Mediterranean regions. Plant Breeding 114:327-332. https://doi.org/10.1111/j.1439-0523.1995.tb01243.x es_ES
dc.description.references de Souza VL, Café-Filho AC (2003). Resistance to Leveillula taurica in the genus Capsicum. Plant Pathology 52:613-619. https://doi.org/10.1046/j.1365-3059.2003.00920.x es_ES
dc.description.references Eggink PM, D’hoop BB, Brouwer M, and Deniau AX (2016). Resistance against Leveillula taurica in Pepper. U.S. Patent No 9, 351, 451. Washington, DC: U.S. Patent and Trademark Office. es_ES
dc.description.references Elad Y, Messika Y, Brand M, David DR, Sztejnberg A (2007). Effect of microclimate on Leveillula taurica powdery mildew of sweet pepper. Phytopathology 97(7):813-824. https://doi.org/10.1094/PHYTO-97-7-0813 es_ES
dc.description.references FAOSTAT (2021). Statistic division, Food and Agriculture Organization of the United Nations. Rome, Italy. Retrieved 2021 March 01 from http://www.fao.org/faostat/ es_ES
dc.description.references Gabor BK, Just BJ, Huang C, Jones CM, Vreugdenhil D, Kniskern JM, … Xiang W (2017). Methods and compositions for producing Capsicum plants with powdery mildew resistance. U.S. Patent No 9,689,045. Washington, DC: U.S. Patent and Trademark Office. es_ES
dc.description.references Hayano‐Kanashiro C, Gámez‐Meza N, Medina‐Juárez LÁ (2016). Wild pepper Capsicum annuum L. var. glabriusculum: Taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Science 56(1):1-11. https://doi.org/10.2135/cropsci2014.11.0789 es_ES
dc.description.references Hoshmand R (2020). Design of experiments for agriculture and the natural sciences (2nd edition). Chapman and Hall/CRC. es_ES
dc.description.references Jo J, Venkatesh J, Han K, Lee HY, Choi GJ, Lee HJ, Choi D, Kang BC (2017). Molecular mapping of PMR1, a novel locus conferring resistance to powdery mildew in pepper (Capsicum annuum). Frontiers in Plant Science 8: 2090. https://doi.org/10.3389/fpls.2017.02090 es_ES
dc.description.references Kim DS, Hwang BK (2012). The pepper MLO gene, CaMlo2, is involved in susceptibility cell death response and bacterial and oomycete proliferation. The Plant Journal 72:843-855. https://doi.org/10.1111/tpj.12003 es_ES
dc.description.references Kono A, Ban Y, Mitani N, Fujii H, Sato S, Suzaki K, … Sato A (2018). Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Molecular Breeding 38:138. https://doi.org/10.1007/s11032-018-0889-8 es_ES
dc.description.references Kraft KH, Luna-Ruíz J, Gepts P (2013). A new collection of wild populations of Capsicum in Mexico and the southern United States. Genetic Resources and Crop Evolution 60(1):225-232. https://link.springer.com/article/10.1007/s10722-012-9827-5 es_ES
dc.description.references Lee OH, Hwang HS, Kim JY, Han JH, Yoo YS, Kim BS (2001). A search for sources of resistance to powdery mildew (Leveillula taurica (Lév.) Arn) in pepper (Capsicum spp.). Korean Journal of Horticultural Science and Technology 19(1):7-11. es_ES
dc.description.references Lefebvre V, Daubèze AM, Rouppe van der Voort J, Peleman J, Bardin M, Palloix A (2003). QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theoretical and Applied Genetics 107:661-666. es_ES
dc.description.references Lin K, Gong L, Huang Y, Liu C, Pan J (2019). Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in Plant Sciences 10:155. https://doi.org/10.3389/fpls.2019.00155 es_ES
dc.description.references Luna-Ruiz JdJ, Pérez-Chávez MS, Martínez-de-Anda JA, Sosa-Ramírez J (2018). Distribución ecogeográfica del chile silvestre en México y su conservación ex situ. In: Aguilar-Meléndez A, Vásquez-Dávila MA, Katz E, Hernández-Colorado MR (Eds). Los chiles que le dan sabor al mundo. IRD Éditions. https://doi.org/10.4000/books.irdeditions.30934 es_ES
dc.description.references Manzur JP, Fita A, Prohens J, Rodríguez-Burruezo A (2015). Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated ají (C. baccatum) accessions as donor parents. PLoS One 10:12. https://doi.org/10.1371/journal.pone.0144142 es_ES
dc.description.references McCoy JE, Bosland PW (2019). Identification of resistance to powdery mildew in Chile pepper. HortScience 54(1):4-7. https://doi.org/10.21273/HORTSCI13596-18 es_ES
dc.description.references Molot PM, Leroux JP, Diop-Bruckler M (1990). Leveillula taurica (Lév) Arn: cultures axéniques, biologie et spécificité parasitaire [Leveillula taruica (Lév) Arn: axenic cultures, biology and parasite specificity]. Agronomie 10(7):551-559. https://hal.archives-ouvertes.fr/hal-00885316 es_ES
dc.description.references Molot PM, Leroux JP, Ferriere H (1987). Les oÏdiums des cucurbitacées. II. Mise au point d’une technique de conservation des souches en culture axénique [Powdery mildew of cucurbits. II. Development of a technique for the conservation of strains in axenic culture]. Agronomie 7(5):339-343. https://hal.archives-ouvertes.fr/hal-00884999 es_ES
dc.description.references Özer N, Kün A, İlbi H (2018). Detached leaf test for evaluation of resistance to powdery mildew in pepper. Agricultural Research & Technology 14:3. https://doi.org/10.19080/ARTOAJ.2018.14.555923 es_ES
dc.description.references Parisi M, Alioto D, Tripodi P (2020). Overview of biotic stresses in pepper (Capsicum spp.): Sources of genetic resistance, molecular breeding and genomics. International Journal of Molecular Sciences 21(7):2587. https://doi.org/10.3390/ijms21072587 es_ES
dc.description.references Pereira-Dias L, Vilanova S, Fita A, Prohens J, Rodríguez-Burruezo A (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish center of diversity revealed by genotyping-by-sequencing. Horticulture Research 6:54. https://doi.org/10.1038/s41438-019-0132-8 es_ES
dc.description.references Robbins MGL, Hoffmann DRT, Wang FV (2017). Anticarcinogenic flavonoids in different fruits commonly consumed. Plant Sciences Journal 40:2379-2383. es_ES
dc.description.references Sudha A, Lakshmanan P (2009). Integrated disease management of powdery mildew (Leveillula taurica (Lev.) Arn.) of chilli (Capsicum annuum L.). Archives of Phytopathology and Plant Protection 42:299-317. https://doi.org/10.1080/03235400601037198 es_ES
dc.description.references Zheng Z (2012). Exploration of MLO-based resistance in vegetable crops. PhD Thesis, Wageningen University, Netherlands. es_ES
dc.description.references Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, … Bai Y (2013). Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103:623-632. https://doi.org/10.1094/PHYTO-08-12-0198-R es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem