Xomalis, A.; Zheng, X.; Demetriadou, A.; Martínez, A.; Chikkaraddy, R.; Baumberg, JJ. (2021). Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS. Nano Letters. 21(6):2512-2518. https://doi.org/10.1021/acs.nanolett.0c04987
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186211
Título:
|
Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS
|
Autor:
|
Xomalis, Angelos
Zheng, Xuezhi
Demetriadou, Angela
Martínez, Alejandro
Chikkaraddy, Rohit
Baumberg, Jeremy J.
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Fecha difusión:
|
|
Resumen:
|
[EN] Plasmonic self-assembled nanocavities are ideal platforms for extreme light localization as they deliver mode volumes of <50 nm(3). Here we show that high-order plasmonic modes within additional micrometer-scale ...[+]
[EN] Plasmonic self-assembled nanocavities are ideal platforms for extreme light localization as they deliver mode volumes of <50 nm(3). Here we show that high-order plasmonic modes within additional micrometer-scale resonators surrounding each nanocavity can boost light localization to intensity enhancements >10(5). Plasmon interference in these hybrid microresonator nanocavities produces surface-enhanced Raman scattering (SERS) signals many-fold larger than in the bare plasmonic constructs. These now allow remote access to molecules inside the ultrathin gaps, avoiding direct irradiation and thus preventing molecular damage. Combining subnanometer gaps with micrometer-scale resonators places a high computational demand on simulations, so a generalized boundary element method (BEM) solver is developed which requires 100-fold less computational resources to characterize these systems. Our results on extreme near-field enhancement open new potential for single- molecule photonic circuits, mid-infrared detectors, and remote spectroscopy.
[-]
|
Palabras clave:
|
Nanocavity
,
Field enhancement
,
Near-field
,
SERS
,
Nano-optics
,
Plasmon interference
,
Remote excitation
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Nano Letters. (issn:
1530-6984
)
|
DOI:
|
10.1021/acs.nanolett.0c04987
|
Editorial:
|
American Chemical Society
|
Versión del editor:
|
https://doi.org/10.1021/acs.nanolett.0c04987
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/H2020/829067/EU
...[+]
info:eu-repo/grantAgreement/EC/H2020/829067/EU
info:eu-repo/grantAgreement/EPSRC//EP%2FL015978%2F1/
info:eu-repo/grantAgreement/EC/H2020/861950/EU
info:eu-repo/grantAgreement/EPSRC//EP%2FL027151%2F1/
info:eu-repo/grantAgreement/EC/H2020/883703/EU
info:eu-repo/grantAgreement/EPSRC//EP%2FS022953%2F1/
info:eu-repo/grantAgreement/EPSRC//EP%2FP029426%2F1/
info:eu-repo/grantAgreement/EPSRC//EP%2FR020965%2F1/
info:eu-repo/grantAgreement/Royal Society, Reino Unido//URF%2FR1%2F180097/
info:eu-repo/grantAgreement/Royal Society, Reino Unido//RGF%2FEA%2F181038/
[-]
|
Agradecimientos:
|
We acknowledge support from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme THOR (829067), POSEIDON (861950) and PICOFORCE (883703). We acknowledge funding from the EPSRC ...[+]
We acknowledge support from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme THOR (829067), POSEIDON (861950) and PICOFORCE (883703). We acknowledge funding from the EPSRC (Cambridge NanoDTC EP/L015978/1, EP/L027151/1, EP/S022953/1, EP/P029426/1, and EP/R020965/1). R.C. acknowledges support from Trinity College, University of Cambridge. A.D. acknowledges support from the Royal Society University Research Fellowship URF/R1/180097 and the Royal Society Research Fellows Enhancement Award RGF/EA/181038.
[-]
|
Tipo:
|
Artículo
|