Rego Mañez, A.; Gonzalez Ramirez, PL.; Jimenez, JM.; Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing. 25(3):2085-2105. https://doi.org/10.1007/s10586-021-03350-z
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186220
Title:
|
Artificial intelligent system for multimedia services in smart home environments
|
Author:
|
REGO MAÑEZ, ALBERT
Gonzalez Ramirez, Pedro Luis
Jimenez, Jose M.
Lloret, Jaime
|
UPV Unit:
|
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
[EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved ...[+]
[EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10.
[-]
|
Subjects:
|
Deep learning
,
Classification
,
Smart home
,
Reinforcement learning
,
Multimedia
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Cluster Computing. (issn:
1386-7857
)
|
DOI:
|
10.1007/s10586-021-03350-z
|
Publisher:
|
Springer-Verlag
|
Publisher version:
|
https://doi.org/10.1007/s10586-021-03350-z
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/
|
Thanks:
|
This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de ...[+]
This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially founded by the Universitat Polite`cnica de Vale`ncia through the postdoctoral PAID-10-20 program.
[-]
|
Type:
|
Artículo
|