Mostrar el registro sencillo del ítem
dc.contributor.author | REGO MAÑEZ, ALBERT | es_ES |
dc.contributor.author | Gonzalez Ramirez, Pedro Luis | es_ES |
dc.contributor.author | Jimenez, Jose M. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2022-09-16T18:04:16Z | |
dc.date.available | 2022-09-16T18:04:16Z | |
dc.date.issued | 2022-06 | es_ES |
dc.identifier.issn | 1386-7857 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186220 | |
dc.description.abstract | [EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10. | es_ES |
dc.description.sponsorship | This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially founded by the Universitat Polite`cnica de Vale`ncia through the postdoctoral PAID-10-20 program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Cluster Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Smart home | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Multimedia | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Artificial intelligent system for multimedia services in smart home environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10586-021-03350-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Rego Mañez, A.; Gonzalez Ramirez, PL.; Jimenez, JM.; Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing. 25(3):2085-2105. https://doi.org/10.1007/s10586-021-03350-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10586-021-03350-z | es_ES |
dc.description.upvformatpinicio | 2085 | es_ES |
dc.description.upvformatpfin | 2105 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\458842 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Smart utilities should discover smart homes. https://www.oliverwyman.com/content/dam/oliver-wyman/v2/publications/2017/may/Smart_Utilities_Should_Discover_Smart_Homes.pdf. Accessed 1 Jan 2021. | es_ES |
dc.description.references | Osservatorio domotica e smart things. https://www.trovaprezzi.it/magazine/trend/osservatorio-domotica-e-smart-things. Accessed 1 Feb 2021. | es_ES |
dc.description.references | Garcia, M., Canovas, A., Edo, M., Lloret, J.: A. QoE management system for ubiquitous IPTV devices, The Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. UBICOMM 2009. Sliema, Malta (2009) | es_ES |
dc.description.references | Vasicek, D., Jalowiczor, J., Sevcik, L., Voznak, M.: 2018 26th Telecommunications Forum (TELFOR). pp. 20-21. Belgrade, Serbia (2018). https://doi.org/10.1109/TELFOR.2018.8612078 | es_ES |
dc.description.references | Jie, Y., Pei, J.Y., Jun, L., Yun, G., Wei, X.: Smart Home System Based on IOT Technologies. 2013 International Conference on Computational and Information Sciences. pp. 21-23. Shiyang, China (2013). https://doi.org/10.1109/ICCIS.2013.468 | es_ES |
dc.description.references | Khan, A., Al-Zahrani, A., Al-Harbi, S., Al-Nashri, S., Khan, I.A.: 2018 15th Learning and Technology Conference (L&T). pp. 25-26. Jeddah, Saudi Arabia. (2018). https://doi.org/10.1109/LT.2018.8368484 | es_ES |
dc.description.references | Malche, T., Maheshwary, P.: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). pp. 10-11. Palladam, India (2017). https://doi.org/10.1109/I-SMAC.2017.8058258 | es_ES |
dc.description.references | Yang, H., Lee, W., Lee, H.: IoT Smart Home Adoption: The Importance of Proper Level Automation. J. Sensors. 2018, 11, Article ID 6464036. https://doi.org/10.1155/2018/6464036 | es_ES |
dc.description.references | Risteska, B.L., Stojkoska, K.V., Trivodaliev. : A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017). https://doi.org/10.1016/j.jclepro.2016.10.006 | es_ES |
dc.description.references | Mussab Alaa, A.A., Zaidan, B.B.Z., MohammedTalal, M.L.M.K.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017). https://doi.org/10.1016/j.jnca.2017.08.017 | es_ES |
dc.description.references | Kuzlu, M., Pipattanasomporn, M., Rahman, S. Review of communication technologies for smart homes, building applications. 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). pp. 3–6. Bangkok, Thailand (2015). https://doi.org/10.1109/ISGT-Asia.2015.7437036 | es_ES |
dc.description.references | Kamel, E., Memari, A.M.: State-of-the-art review of energy smart homes. J. Archit. Eng. (2019). https://doi.org/10.1061/%28ASCE%29AE.1943-5568.0000337 | es_ES |
dc.description.references | Philip, N.Y., Rodrigues, J.J.P.C., Wang, H., Fong, S., Chen, J.: Internet of things for in-home health monitoring systems: current advances, challenges and future directions. IEEE J. Select. Areas Commun. (JSAC) 39(2), 300–310 (2021). https://doi.org/10.1109/JSAC.2020.3042421 | es_ES |
dc.description.references | Apthorpe, N., Reisman, D., Feamster, N.: A smart home is no castle: privacy vulnerabilities of encrypted iot traffic. (2017). https://arXiv.org/1705.06805 | es_ES |
dc.description.references | Augusto-Gonzalez, J., Collen, A., Evangelatos, S., Anagnostopoulos, M., Spathoulas, G., Giannoutakis, K.M., Votis, K., Tzovaras, D., Genge, B., Gelenbe, E., Nijdam, N. A.: From internet of threats to internet of things: a cyber security architecture for smart homes. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Limassol, Cyprus (2019). https://doi.org/10.1109/CAMAD.2019.8858493 | es_ES |
dc.description.references | Lin, H., Bergmann, N.W.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016). https://doi.org/10.3390/info7030044 | es_ES |
dc.description.references | Meng, Y., Zhang, W., Zhu, H., Shen, X.S.: Securing consumer IoT in the smart home: architecture, challenges, and countermeasures. IEEE Wireless Communications. 25(6), 53–59 (2019). https://doi.org/10.1109/MWC.2017.1800100 | es_ES |
dc.description.references | Ammi, M., Alarabi, S., Benkhelifa, E.: Customized blockchain-based architecture for secure smart home for lightweight IoT. Inform. Process. Manag. (2021). https://doi.org/10.1016/j.ipm.2020.102482] | es_ES |
dc.description.references | Atat, R., Liu, L., Jinsong, Wu., Li, G., Ye, C., Yang, Yi.: Big data meet cyber-physical systems: a panoramic survey. IEEE Access. 6, 73603–73636 (2018). https://doi.org/10.1109/ACCESS.2018.2878681 | es_ES |
dc.description.references | Collotta, M., Pau, G.: A novel energy management approach for smart homes using bluetooth low energy. IEEE J. Sel. Areas Commun. 33(12), 2988–2996 (2015). https://doi.org/10.1109/JSAC.2015.2481203 | es_ES |
dc.description.references | Learn about bluetooth. bluetooth Radio Versions. https://www.bluetooth.com/learn-about-bluetooth/radio-versions/. Accessed 25 Jan 2020 | es_ES |
dc.description.references | Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., AliKarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics. 63(4), 426-434 (2017). https://doi.org/10.1109/TCE.2017.015014 | es_ES |
dc.description.references | Xia, C., Li, W., Chang, X., Delicato, F. C., Yang, T., Zomaya, A.L.: Edge-based Energy Management for Smart Homes. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). Athens, Greece. (2018). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-19 | es_ES |
dc.description.references | Celik, B., Roche, R., Suryanarayanan, S., Bouquain, D., Miraoui, A.: Electric energy management in residential areas through coordination of multiple smart homes. Renew. Sustain. Energy Rev. 80, 260–275 (2017). https://doi.org/10.1016/j.rser.2017.05.118 | es_ES |
dc.description.references | Jinsong, Wu., Guo, S., Li, J., Zeng, D.: Big data meet green challenges: big data toward green applications. IEEE Syst. J. 10(3), 888–900 (2016). https://doi.org/10.1109/JSYST.2016.2550530 | es_ES |
dc.description.references | Amjad A., Rabby, F., Sadia, S., Patwary, M., Benkhelifa, E.: Cognitive edge computing based resource allocation framework for Internet of Things, 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). Valencia, Spain (2017). https://doi.org/10.1109/FMEC.2017.7946430 | es_ES |
dc.description.references | Jararweh, Y., Al-Ayyoub, M.: Du’a Al-Zoubi, Elhadj Benkhelifa, An experimental framework for future smart cities using data fusion and software defined systems: the case of environmental monitoring for smart healthcare. Futur. Gener. Comput. Syst. 107, 883–897 (2020). https://doi.org/10.1016/j.future.2018.01.038 | es_ES |
dc.description.references | Sodhro, A.H., Gurtov, A, Zahid, N, Pirbhulal, S, Wang, W, Ur Rahman, M.M., Imran, M.A., Abbasi, Q.H.: Towards convergence of AI and IoT for energy efficient communication in smart homes. IEEE Internet Things J. (Early Access). pp. 1–1. https://doi.org/10.1109/JIOT.2020.3023667 | es_ES |
dc.description.references | Guo, X., Shen, Z., Zhang, Y., Teng, Wu.: Review on the application of artificial intelligence in smart homes. Smart Cities. 2(3), 402–420 (2019). https://doi.org/10.3390/smartcities2030025 | es_ES |
dc.description.references | Sepasgozar, S., Karimi, R., Farahzadi, L., Moezzi, F., Shirowzhan, S., Ebrahimzadeh, S.M., Hui, F., Aye, L.: A systematic content review of artificial intelligence and the internet of things applications in smart home. Appl. Sci. 10(9), 3074 (2020). https://doi.org/10.3390/app10093074 | es_ES |
dc.description.references | Song, H., Bai, J., Yi, Y., Jinsong, Wu., Liu, L.: Artificial intelligence enabled internet of things: network architecture and spectrum access. IEEE Comput. Intell. Mag. 15(1), 44–51 (2020). https://doi.org/10.1109/MCI.2019.2954643 | es_ES |
dc.description.references | Lloret, J., Canovas, A., Sendra, S., Parra, L.: A smart communication architecture for ambient assisted living. IEEE Commun. Mag. 53(1), 26–33 (2015) | es_ES |
dc.description.references | Sahoo, S.R., Gupta, B.B.: Multiple features based approach for automatic fake news detection on social networks using deep learning. Appl. Soft Comp. 100(106983), (2021), ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2020.106983. | es_ES |
dc.description.references | González Ramírez, P.L., Lloret, J., Tomás, J., Hurtado, M.: IoT-networks group-based model that uses AI for workgroup allocation. Comput. Netw. 186, 107745 (2021). https://doi.org/10.1016/j.comnet.2020.107745. | es_ES |
dc.description.references | Ramirez, P.L.G., Taha, M., Lloret, J., Tomas, J.: An Intelligent Algorithm for Resource Sharing and Self-Management of Wireless-IoT-Gateway. IEEE Access. 8, 3159–3170 (2020). https://doi.org/10.1109/ACCESS.2019.2960508 | es_ES |
dc.description.references | Kurbiel, T., Khaleghian, S.: Training of deep neural networks based on distance measures using RMSProp. (2017). https://arxiv.org/abs/1708.01911 | es_ES |
dc.description.references | LeCun Y.A., Bottou L., Orr G.B., Müller K.R.: “Efficient BackProp”, Montavon G., Orr G.B., Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3. | es_ES |
dc.description.references | ROBOT LEARNING.In: Jonathan, H., Connell Mahadevan, S., Kluwer, Boston (eds.) 1993/1997, xii 240 pp., ISBN 0-7923-9365-1. Robotica. 17(2), 229-235 (1999). https://doi.org/10.1017/S0263574799271172 | es_ES |
dc.description.references | Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., Barth, M.J.: Deep reinforcement learning-based vehicle energy efficiency autonomous learning system. 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA. 1228-1233 (2017). https://doi.org/10.1109/IVS.2017.7995880. | es_ES |
dc.description.references | Xiaojun, C., Feiping, N., Sen, W., Yi, Y., Xiaofang, Z., Chengqi, Z.: Compound rank-k projections for bilinear analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1502–1513 (2016). https://doi.org/10.1109/tnnls.2015.2441735 | es_ES |
dc.description.references | Yuan, D., Chang, X., Huang, P.-Y., Liu, Q., He, Z.: Self-supervised deep correlation tracking. IEEE Trans. Image Process. 30, 976–985 (2021). https://doi.org/10.1109/TIP.2020.3037518 | es_ES |
dc.description.references | da Cruz, M.A.A., Rodrigues, J.J.P.C, Lorenz, P., Korotaev, V., de Albuquerque, V.H.C.: In.IoT – a new middleware for internet of things. IEEE Internet Things J. 8(10), 7902-7911 (2021). https://doi.org/10.1109/JIOT.2020.3041699. | es_ES |
dc.description.references | Zhou, L., Rodrigues, J.J.P.C., Wang, H., Martini, M., Leung, V.C.M.: 5G multimedia communications: theory, technology, and application. IEEE Multimedia. 26(1), 8-9 (2019). https://doi.org/10.1109/MMUL.2018.2875256. | es_ES |