- -

Artificial intelligent system for multimedia services in smart home environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial intelligent system for multimedia services in smart home environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author REGO MAÑEZ, ALBERT es_ES
dc.contributor.author Gonzalez Ramirez, Pedro Luis es_ES
dc.contributor.author Jimenez, Jose M. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-09-16T18:04:16Z
dc.date.available 2022-09-16T18:04:16Z
dc.date.issued 2022-06 es_ES
dc.identifier.issn 1386-7857 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186220
dc.description.abstract [EN] Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10. es_ES
dc.description.sponsorship This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially founded by the Universitat Polite`cnica de Vale`ncia through the postdoctoral PAID-10-20 program. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Cluster Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep learning es_ES
dc.subject Classification es_ES
dc.subject Smart home es_ES
dc.subject Reinforcement learning es_ES
dc.subject Multimedia es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Artificial intelligent system for multimedia services in smart home environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10586-021-03350-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rego Mañez, A.; Gonzalez Ramirez, PL.; Jimenez, JM.; Lloret, J. (2022). Artificial intelligent system for multimedia services in smart home environments. Cluster Computing. 25(3):2085-2105. https://doi.org/10.1007/s10586-021-03350-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10586-021-03350-z es_ES
dc.description.upvformatpinicio 2085 es_ES
dc.description.upvformatpfin 2105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\458842 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Smart utilities should discover smart homes. https://www.oliverwyman.com/content/dam/oliver-wyman/v2/publications/2017/may/Smart_Utilities_Should_Discover_Smart_Homes.pdf. Accessed 1 Jan 2021. es_ES
dc.description.references Osservatorio domotica e smart things. https://www.trovaprezzi.it/magazine/trend/osservatorio-domotica-e-smart-things. Accessed 1 Feb 2021. es_ES
dc.description.references Garcia, M., Canovas, A., Edo, M., Lloret, J.: A. QoE management system for ubiquitous IPTV devices, The Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. UBICOMM 2009. Sliema, Malta (2009) es_ES
dc.description.references Vasicek, D., Jalowiczor, J., Sevcik, L., Voznak, M.: 2018 26th Telecommunications Forum (TELFOR). pp. 20-21. Belgrade, Serbia (2018). https://doi.org/10.1109/TELFOR.2018.8612078 es_ES
dc.description.references Jie, Y., Pei, J.Y., Jun, L., Yun, G., Wei, X.: Smart Home System Based on IOT Technologies. 2013 International Conference on Computational and Information Sciences. pp. 21-23. Shiyang, China (2013). https://doi.org/10.1109/ICCIS.2013.468 es_ES
dc.description.references Khan, A., Al-Zahrani, A., Al-Harbi, S., Al-Nashri, S., Khan, I.A.: 2018 15th Learning and Technology Conference (L&T). pp. 25-26. Jeddah, Saudi Arabia. (2018). https://doi.org/10.1109/LT.2018.8368484 es_ES
dc.description.references Malche, T., Maheshwary, P.: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). pp. 10-11. Palladam, India (2017). https://doi.org/10.1109/I-SMAC.2017.8058258 es_ES
dc.description.references Yang, H., Lee, W., Lee, H.: IoT Smart Home Adoption: The Importance of Proper Level Automation. J. Sensors. 2018, 11, Article ID 6464036. https://doi.org/10.1155/2018/6464036 es_ES
dc.description.references Risteska, B.L., Stojkoska, K.V., Trivodaliev. : A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017). https://doi.org/10.1016/j.jclepro.2016.10.006 es_ES
dc.description.references Mussab Alaa, A.A., Zaidan, B.B.Z., MohammedTalal, M.L.M.K.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017). https://doi.org/10.1016/j.jnca.2017.08.017 es_ES
dc.description.references Kuzlu, M., Pipattanasomporn, M., Rahman, S. Review of communication technologies for smart homes, building applications. 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). pp. 3–6. Bangkok, Thailand (2015). https://doi.org/10.1109/ISGT-Asia.2015.7437036 es_ES
dc.description.references Kamel, E., Memari, A.M.: State-of-the-art review of energy smart homes. J. Archit. Eng. (2019). https://doi.org/10.1061/%28ASCE%29AE.1943-5568.0000337 es_ES
dc.description.references Philip, N.Y., Rodrigues, J.J.P.C., Wang, H., Fong, S., Chen, J.: Internet of things for in-home health monitoring systems: current advances, challenges and future directions. IEEE J. Select. Areas Commun. (JSAC) 39(2), 300–310 (2021). https://doi.org/10.1109/JSAC.2020.3042421 es_ES
dc.description.references Apthorpe, N., Reisman, D., Feamster, N.: A smart home is no castle: privacy vulnerabilities of encrypted iot traffic. (2017). https://arXiv.org/1705.06805 es_ES
dc.description.references Augusto-Gonzalez, J., Collen, A., Evangelatos, S., Anagnostopoulos, M., Spathoulas, G., Giannoutakis, K.M., Votis, K., Tzovaras, D., Genge, B., Gelenbe, E., Nijdam, N. A.: From internet of threats to internet of things: a cyber security architecture for smart homes. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Limassol, Cyprus (2019). https://doi.org/10.1109/CAMAD.2019.8858493 es_ES
dc.description.references Lin, H., Bergmann, N.W.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016). https://doi.org/10.3390/info7030044 es_ES
dc.description.references Meng, Y., Zhang, W., Zhu, H., Shen, X.S.: Securing consumer IoT in the smart home: architecture, challenges, and countermeasures. IEEE Wireless Communications. 25(6), 53–59 (2019). https://doi.org/10.1109/MWC.2017.1800100 es_ES
dc.description.references Ammi, M., Alarabi, S., Benkhelifa, E.: Customized blockchain-based architecture for secure smart home for lightweight IoT. Inform. Process. Manag. (2021). https://doi.org/10.1016/j.ipm.2020.102482] es_ES
dc.description.references Atat, R., Liu, L., Jinsong, Wu., Li, G., Ye, C., Yang, Yi.: Big data meet cyber-physical systems: a panoramic survey. IEEE Access. 6, 73603–73636 (2018). https://doi.org/10.1109/ACCESS.2018.2878681 es_ES
dc.description.references Collotta, M., Pau, G.: A novel energy management approach for smart homes using bluetooth low energy. IEEE J. Sel. Areas Commun. 33(12), 2988–2996 (2015). https://doi.org/10.1109/JSAC.2015.2481203 es_ES
dc.description.references Learn about bluetooth. bluetooth Radio Versions. https://www.bluetooth.com/learn-about-bluetooth/radio-versions/. Accessed 25 Jan 2020 es_ES
dc.description.references Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., AliKarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics. 63(4), 426-434 (2017). https://doi.org/10.1109/TCE.2017.015014 es_ES
dc.description.references Xia, C., Li, W., Chang, X., Delicato, F. C., Yang, T., Zomaya, A.L.: Edge-based Energy Management for Smart Homes. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). Athens, Greece. (2018). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00-19 es_ES
dc.description.references Celik, B., Roche, R., Suryanarayanan, S., Bouquain, D., Miraoui, A.: Electric energy management in residential areas through coordination of multiple smart homes. Renew. Sustain. Energy Rev. 80, 260–275 (2017). https://doi.org/10.1016/j.rser.2017.05.118 es_ES
dc.description.references Jinsong, Wu., Guo, S., Li, J., Zeng, D.: Big data meet green challenges: big data toward green applications. IEEE Syst. J. 10(3), 888–900 (2016). https://doi.org/10.1109/JSYST.2016.2550530 es_ES
dc.description.references Amjad A., Rabby, F., Sadia, S., Patwary, M., Benkhelifa, E.: Cognitive edge computing based resource allocation framework for Internet of Things, 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). Valencia, Spain (2017). https://doi.org/10.1109/FMEC.2017.7946430 es_ES
dc.description.references Jararweh, Y., Al-Ayyoub, M.: Du’a Al-Zoubi, Elhadj Benkhelifa, An experimental framework for future smart cities using data fusion and software defined systems: the case of environmental monitoring for smart healthcare. Futur. Gener. Comput. Syst. 107, 883–897 (2020). https://doi.org/10.1016/j.future.2018.01.038 es_ES
dc.description.references Sodhro, A.H., Gurtov, A, Zahid, N, Pirbhulal, S, Wang, W, Ur Rahman, M.M., Imran, M.A., Abbasi, Q.H.: Towards convergence of AI and IoT for energy efficient communication in smart homes. IEEE Internet Things J. (Early Access). pp. 1–1. https://doi.org/10.1109/JIOT.2020.3023667 es_ES
dc.description.references Guo, X., Shen, Z., Zhang, Y., Teng, Wu.: Review on the application of artificial intelligence in smart homes. Smart Cities. 2(3), 402–420 (2019). https://doi.org/10.3390/smartcities2030025 es_ES
dc.description.references Sepasgozar, S., Karimi, R., Farahzadi, L., Moezzi, F., Shirowzhan, S., Ebrahimzadeh, S.M., Hui, F., Aye, L.: A systematic content review of artificial intelligence and the internet of things applications in smart home. Appl. Sci. 10(9), 3074 (2020). https://doi.org/10.3390/app10093074 es_ES
dc.description.references Song, H., Bai, J., Yi, Y., Jinsong, Wu., Liu, L.: Artificial intelligence enabled internet of things: network architecture and spectrum access. IEEE Comput. Intell. Mag. 15(1), 44–51 (2020). https://doi.org/10.1109/MCI.2019.2954643 es_ES
dc.description.references Lloret, J., Canovas, A., Sendra, S., Parra, L.: A smart communication architecture for ambient assisted living. IEEE Commun. Mag. 53(1), 26–33 (2015) es_ES
dc.description.references Sahoo, S.R., Gupta, B.B.: Multiple features based approach for automatic fake news detection on social networks using deep learning. Appl. Soft Comp. 100(106983), (2021), ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2020.106983. es_ES
dc.description.references González Ramírez, P.L., Lloret, J., Tomás, J., Hurtado, M.: IoT-networks group-based model that uses AI for workgroup allocation. Comput. Netw. 186, 107745 (2021). https://doi.org/10.1016/j.comnet.2020.107745. es_ES
dc.description.references Ramirez, P.L.G., Taha, M., Lloret, J., Tomas, J.: An Intelligent Algorithm for Resource Sharing and Self-Management of Wireless-IoT-Gateway. IEEE Access. 8, 3159–3170 (2020). https://doi.org/10.1109/ACCESS.2019.2960508 es_ES
dc.description.references Kurbiel, T., Khaleghian, S.: Training of deep neural networks based on distance measures using RMSProp. (2017). https://arxiv.org/abs/1708.01911 es_ES
dc.description.references LeCun Y.A., Bottou L., Orr G.B., Müller K.R.: “Efficient BackProp”, Montavon G., Orr G.B., Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3. es_ES
dc.description.references ROBOT LEARNING.In: Jonathan, H., Connell Mahadevan, S., Kluwer, Boston (eds.) 1993/1997, xii 240 pp., ISBN 0-7923-9365-1. Robotica. 17(2), 229-235 (1999). https://doi.org/10.1017/S0263574799271172 es_ES
dc.description.references Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., Barth, M.J.: Deep reinforcement learning-based vehicle energy efficiency autonomous learning system. 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA. 1228-1233 (2017). https://doi.org/10.1109/IVS.2017.7995880. es_ES
dc.description.references Xiaojun, C., Feiping, N., Sen, W., Yi, Y., Xiaofang, Z., Chengqi, Z.: Compound rank-k projections for bilinear analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1502–1513 (2016). https://doi.org/10.1109/tnnls.2015.2441735 es_ES
dc.description.references Yuan, D., Chang, X., Huang, P.-Y., Liu, Q., He, Z.: Self-supervised deep correlation tracking. IEEE Trans. Image Process. 30, 976–985 (2021). https://doi.org/10.1109/TIP.2020.3037518 es_ES
dc.description.references da Cruz, M.A.A., Rodrigues, J.J.P.C, Lorenz, P., Korotaev, V., de Albuquerque, V.H.C.: In.IoT – a new middleware for internet of things. IEEE Internet Things J. 8(10), 7902-7911 (2021). https://doi.org/10.1109/JIOT.2020.3041699. es_ES
dc.description.references Zhou, L., Rodrigues, J.J.P.C., Wang, H., Martini, M., Leung, V.C.M.: 5G multimedia communications: theory, technology, and application. IEEE Multimedia. 26(1), 8-9 (2019). https://doi.org/10.1109/MMUL.2018.2875256. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem