Mostrar el registro sencillo del ítem
dc.contributor.author | Kalaimani, Iniyan | es_ES |
dc.contributor.author | Dietzsch, Julian | es_ES |
dc.contributor.author | Groß, Michael | es_ES |
dc.date.accessioned | 2022-09-27T08:08:01Z | |
dc.date.available | 2022-09-27T08:08:01Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.isbn | 9788490489697 | |
dc.identifier.uri | http://hdl.handle.net/10251/186592 | |
dc.description.abstract | [EN] Rotor-dynamical systems made of 3D-fiber-reinforced composites which are subjected to dynamical loads exhibit an increased fiber bending stiffness in numerical simulations. We propose a numerical modeling approach of fiber-reinforced composites that treats this behaviour accurately. Our model uses a multi-field mixed finite element formulation based on a dynamic variational approach, as demonstrated in [1], to perform long-term dynamic simulations that yield numerical solutions with increased accuracy in efficient CPU-time.We extend a Cauchy continuum with higher-order gradients of the deformation mapping as an independent field in the functional formulation, as suggested in [2], to model the bending stiffness of fibers accurately. This extended continuum also takes into account the higher-order energy contributions including the fiber curvature along with popular proven approaches that avoid the numerical locking effect of the fibers efficiently.We apply the proposed approach on Cook’s cantilever beam with a hyperelastic, transversely isotropic, polyconvex material behavior in a transient dynamic analysis. The beam is subjected to bending loads with a strong dependence of the overall stiffness on the fiber orientation. The spatial and temporal convergence as well as the conservation properties are analyzed. It is observed that the model needs an improved numerical treatment to conserve total momenta as well as total energy. | es_ES |
dc.description.sponsorship | This research was made possible by the DFG under grants GR 3297/6-1 and GR 3297/4-2, which is gratefully acknowledged. | es_ES |
dc.format.extent | 9 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Fiber-reinforced material | es_ES |
dc.subject | Fiber-bending stiffness | es_ES |
dc.subject | Mixed variational principle | es_ES |
dc.subject | Energy-momentum time integration | es_ES |
dc.subject | Higher-order finite elements in space and time | es_ES |
dc.title | Momentum conserving dynamic variational approach for the modeling of fiber-bending stiffness in fiber-reinforced composites | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/YIC2021.2021.12367 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//GR 3297%2F6-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//GR 3297%2F4-2 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kalaimani, I.; Dietzsch, J.; Groß, M. (2022). Momentum conserving dynamic variational approach for the modeling of fiber-bending stiffness in fiber-reinforced composites. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 214-222. https://doi.org/10.4995/YIC2021.2021.12367 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | VI ECCOMAS Young Investigators Conference | es_ES |
dc.relation.conferencedate | Julio 07-09, 2021 | es_ES |
dc.relation.conferenceplace | Valencia, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12367 | es_ES |
dc.description.upvformatpinicio | 214 | es_ES |
dc.description.upvformatpfin | 222 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\12367 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |