Mostrar el registro sencillo del ítem
dc.contributor.author | Amo-Navarro, Jesús | es_ES |
dc.contributor.author | Vinuesa, Ricardo | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.contributor.author | Hoyas, S | es_ES |
dc.date.accessioned | 2022-09-27T18:04:10Z | |
dc.date.available | 2022-09-27T18:04:10Z | |
dc.date.issued | 2021-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186635 | |
dc.description.abstract | [EN] In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary conditions emerges when transforming the Navier-Stokes equations to the vorticity-velocity formulation. In the case of problems with a periodic direction, the problem can be transformed into multiple, independent, two-dimensional fourth-order elliptic problems. An efficient method to solve these two-dimensional bi-Laplacian operators with Neumann homogeneus boundary conditions was designed and validated using 2D compact finite difference schemes. The solution is formulated as a linear combination of auxiliary solutions, as many as the number of points on the boundary, a method that was prohibitive some years ago due to the large memory requirements to store all these auxiliary functions. The validation has been made for different field configurations, grid sizes, and stencils of the numerical scheme, showing its potential to tackle high gradient fields as those that can be found in turbulent flows. | es_ES |
dc.description.sponsorship | This work was supported by RTI2018-102256-B-I00 of MINECO/FEDER and the ALBATROSS project (National Plan for Scientific and Technical Research and Innovation 2017-2020, No. PID2019-104978RB-I00). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | DNS | es_ES |
dc.subject | CFD | es_ES |
dc.subject | Turbulence | es_ES |
dc.subject | Bi-Laplacian | es_ES |
dc.subject | Fourth-order elliptic | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Two-dimensional compact-finite-difference schemes for solving the bi-Laplacian operator with homogeneous wall-normal derivatives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math9192508 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104978RB-I00/ES/SISTEMA DE AYUDA A LA DECISION VALIDADO CLINICAMENTE BASADO EN MODELOS DE INTELIGENCIA ARTIFICIAL A NIVEL DE PIXEL PARA DECIDIR OPCIONES TERAPEUTICAS EN GLIOBLASTOMA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Amo-Navarro, J.; Vinuesa, R.; Conejero, JA.; Hoyas, S. (2021). Two-dimensional compact-finite-difference schemes for solving the bi-Laplacian operator with homogeneous wall-normal derivatives. Mathematics. 9(19):1-13. https://doi.org/10.3390/math9192508 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math9192508 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\455429 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |