Mostrar el registro completo del ítem
Amo-Navarro, J.; Vinuesa, R.; Conejero, JA.; Hoyas, S. (2021). Two-dimensional compact-finite-difference schemes for solving the bi-Laplacian operator with homogeneous wall-normal derivatives. Mathematics. 9(19):1-13. https://doi.org/10.3390/math9192508
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186635
Título: | Two-dimensional compact-finite-difference schemes for solving the bi-Laplacian operator with homogeneous wall-normal derivatives | |
Autor: | Amo-Navarro, Jesús Vinuesa, Ricardo | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In fluid mechanics, the bi-Laplacian operator with Neumann homogeneous boundary conditions emerges when transforming the Navier-Stokes equations to the vorticity-velocity formulation. In the case of problems with a ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/math9192508 | |
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|