- -

Multigrid Reduced in Time for Isogeometric Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multigrid Reduced in Time for Isogeometric Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tielen, Roel es_ES
dc.contributor.author Möller, Matthias es_ES
dc.contributor.author Vuik, Kees es_ES
dc.date.accessioned 2022-09-28T06:47:21Z
dc.date.available 2022-09-28T06:47:21Z
dc.date.issued 2022-05-11
dc.identifier.isbn 9788490489697
dc.identifier.uri http://hdl.handle.net/10251/186647
dc.description.abstract [EN] Isogeometric Analysis (IgA) can be seen as the natural extension of the Finite Element Method (FEM) to high-order B-spline basis functions. Combined with a time integration scheme within the method of lines, IgA has become a viable alternative to FEM for time-dependent problems. However, as processors’ clock speeds are no longer increasing but the number of cores are going up, traditional (i.e., sequential) time integration schemes become more and more the bottleneck within these large-scale computations. The Multigrid Reduced in Time (MGRIT) method is a parallel-in-time integration method that enables exploitation of parallelism not only in space but also in the temporal direction. In this paper, we apply MGRIT to discretizations arising from IgA for the first time in the literature. In particular, we investigate the (parallel) performance of MGRIT in this context for a variety of geometries, MGRIT hierarchies and time integration schemes. Numerical results show that the MGRIT method converges independent of the mesh width, spline degree of the B-spline basis functions and time step size ∆t and is highly parallelizable when applied in the context of IgA. es_ES
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Isogeometric Analysis es_ES
dc.subject P-multigrid methods es_ES
dc.subject (block) ILUT smoothers es_ES
dc.subject Multigrid Reduced in Time es_ES
dc.title Multigrid Reduced in Time for Isogeometric Analysis es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/YIC2021.2021.12219
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Tielen, R.; Möller, M.; Vuik, K. (2022). Multigrid Reduced in Time for Isogeometric Analysis. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 47-56. https://doi.org/10.4995/YIC2021.2021.12219 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename VI ECCOMAS Young Investigators Conference es_ES
dc.relation.conferencedate Julio 07-09, 2021 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12219 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 56 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\12219 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem