Mostrar el registro sencillo del ítem
dc.contributor.author | Schussnig, Richard | es_ES |
dc.contributor.author | Pacheco, Douglas | es_ES |
dc.contributor.author | Kaltenbacher, Manfred | es_ES |
dc.contributor.author | Fries, Thomas-Peter | es_ES |
dc.date.accessioned | 2022-09-29T10:14:38Z | |
dc.date.available | 2022-09-29T10:14:38Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.isbn | 9788490489697 | |
dc.identifier.uri | http://hdl.handle.net/10251/186719 | |
dc.description.abstract | [EN] In numerous engineering applications, such as polymer or blood flow, the dependence of fluid viscosity on the local shear rate plays an important role. Standard techniques using inf-sup stable finite elements lead to saddle-point systems posing a challenge even for state-ofthe-art solvers and preconditioners. Alternatively, projection schemes or time-splitting methods decouple equations for velocity and pressure, resulting in easier to solve linear systems. Although pressure and velocity correction schemes of high-order accuracy are available for Newtonian fluids, the extension to generalised Newtonian fluids is not a trivial task. Herein, we present a split-step scheme based on an explicit-implicit treatment of pressure, viscosity and convection terms, combined with a pressure Poisson equation with fully consistent boundary conditions. Then, using standard equal-order finite elements becomes possible. Stability, flexibility and efficiency of the splitting scheme is showcased in two challenging applications involving aortic aneurysm flow and human phonation. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge Graz University of Technology for the financial support of the Lead-project: Mechanics, Modeling and Simulation of Aortic Dissection. | es_ES |
dc.format.extent | 10 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Finite elements | es_ES |
dc.subject | Generalised Newtonian fluid | es_ES |
dc.subject | Incompressible flow | es_ES |
dc.subject | Navier-Stokes equations | es_ES |
dc.subject | Split-step scheme | es_ES |
dc.subject | Time-splitting method | es_ES |
dc.title | Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/YIC2021.2021.12217 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Schussnig, R.; Pacheco, D.; Kaltenbacher, M.; Fries, T. (2022). Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 335-344. https://doi.org/10.4995/YIC2021.2021.12217 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | VI ECCOMAS Young Investigators Conference | es_ES |
dc.relation.conferencedate | Julio 07-09, 2021 | es_ES |
dc.relation.conferenceplace | Valencia, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12217 | es_ES |
dc.description.upvformatpinicio | 335 | es_ES |
dc.description.upvformatpfin | 344 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\12217 | es_ES |
dc.contributor.funder | TU Graz, Internationale Beziehungen und Mobilitätsprogramme | es_ES |