- -

Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Schussnig, Richard es_ES
dc.contributor.author Pacheco, Douglas es_ES
dc.contributor.author Kaltenbacher, Manfred es_ES
dc.contributor.author Fries, Thomas-Peter es_ES
dc.date.accessioned 2022-09-29T10:14:38Z
dc.date.available 2022-09-29T10:14:38Z
dc.date.issued 2022-05-11
dc.identifier.isbn 9788490489697
dc.identifier.uri http://hdl.handle.net/10251/186719
dc.description.abstract [EN] In numerous engineering applications, such as polymer or blood flow, the dependence of fluid viscosity on the local shear rate plays an important role. Standard techniques using inf-sup stable finite elements lead to saddle-point systems posing a challenge even for state-ofthe-art solvers and preconditioners. Alternatively, projection schemes or time-splitting methods decouple equations for velocity and pressure, resulting in easier to solve linear systems. Although pressure and velocity correction schemes of high-order accuracy are available for Newtonian fluids, the extension to generalised Newtonian fluids is not a trivial task. Herein, we present a split-step scheme based on an explicit-implicit treatment of pressure, viscosity and convection terms, combined with a pressure Poisson equation with fully consistent boundary conditions. Then, using standard equal-order finite elements becomes possible. Stability, flexibility and efficiency of the splitting scheme is showcased in two challenging applications involving aortic aneurysm flow and human phonation. es_ES
dc.description.sponsorship The authors gratefully acknowledge Graz University of Technology for the financial support of the Lead-project: Mechanics, Modeling and Simulation of Aortic Dissection. es_ES
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Finite elements es_ES
dc.subject Generalised Newtonian fluid es_ES
dc.subject Incompressible flow es_ES
dc.subject Navier-Stokes equations es_ES
dc.subject Split-step scheme es_ES
dc.subject Time-splitting method es_ES
dc.title Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/YIC2021.2021.12217
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Schussnig, R.; Pacheco, D.; Kaltenbacher, M.; Fries, T. (2022). Efficient and Higher-Order Accurate Split-Step Methods for Generalised Newtonian Fluid Flow. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 335-344. https://doi.org/10.4995/YIC2021.2021.12217 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename VI ECCOMAS Young Investigators Conference es_ES
dc.relation.conferencedate Julio 07-09, 2021 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12217 es_ES
dc.description.upvformatpinicio 335 es_ES
dc.description.upvformatpfin 344 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\12217 es_ES
dc.contributor.funder TU Graz, Internationale Beziehungen und Mobilitätsprogramme es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem