Mostrar el registro sencillo del ítem
dc.contributor.author | Fatima, Arooj | es_ES |
dc.contributor.author | Turek, Stefan | es_ES |
dc.contributor.author | Ouazzi, Abderrahim | es_ES |
dc.contributor.author | Afaq, Muhammad Aaqib | es_ES |
dc.date.accessioned | 2022-09-29T10:16:38Z | |
dc.date.available | 2022-09-29T10:16:38Z | |
dc.date.issued | 2022-05-11 | |
dc.identifier.isbn | 9788490489697 | |
dc.identifier.uri | http://hdl.handle.net/10251/186720 | |
dc.description.abstract | [EN] Developing a numerical and algorithmic tool which correctly identifies unyielded regions in yield stress fluid flow is a challenging task. Two approaches are commonly used to handle the singular behaviour at the yield surface, i.e. the Augmented Lagrangian approach and the regularization approach, respectively. Generally in the regularization approach, solvers do not perform efficiently when the regularization parameter gets very small. In this work, we use a formulation introducing a new auxiliary stress. The three field formulation of the yield stress fluid corresponds to a regularization-free Bingham formulation. The resulting set of equations arising from the three field formulation is solved efficiently and accurately by a monolithic finite element method. The velocity and pressure are discretized by the higher order stable FEM pair Q2/Pdisc 1 and the auxiliary stress is discretized by the Q2 element. Furthermore, this problem is highly nonlinear and presents a big challenge to any nonlinear solver. Therefore, we developed a new adaptive discrete Newton method, which evaluates the Jacobian with the divided difference approach. We relate the step length to the rate of the actual nonlinear reduction for achieving a robust adaptive Newton method. We analyse the solvability of the problem along with the adaptive Newton method for Bingham fluids by doing numerical studies for a prototypical configuration ”viscoplastic fluid flow in a channel”. | es_ES |
dc.description.sponsorship | We would like to thank the Deutsche Forschungsgemeinschaft (DFG) for their financial support under the DFG Priority Program SPP 1962. The authors also acknowledge the support by LS3 and LiDO3 team at ITMC, TU Dortmund University | es_ES |
dc.format.extent | 10 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Yield stress fluids | es_ES |
dc.subject | Bingham fluid | es_ES |
dc.subject | Directional divided difference | es_ES |
dc.subject | FEM | es_ES |
dc.subject | Adaptive Newton's method | es_ES |
dc.subject | Multigrid | es_ES |
dc.subject | Regularization-Free | es_ES |
dc.subject | Viscoplastic Fluids | es_ES |
dc.title | An adaptive discrete Newton method for regularization-free Bingham model | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/YIC2021.2021.12389 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//SPP 1962 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Fatima, A.; Turek, S.; Ouazzi, A.; Afaq, MA. (2022). An adaptive discrete Newton method for regularization-free Bingham model. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 180-189. https://doi.org/10.4995/YIC2021.2021.12389 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | VI ECCOMAS Young Investigators Conference | es_ES |
dc.relation.conferencedate | Julio 07-09, 2021 | es_ES |
dc.relation.conferenceplace | Valencia, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/YIC/YIC2021/paper/view/12389 | es_ES |
dc.description.upvformatpinicio | 180 | es_ES |
dc.description.upvformatpfin | 189 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\12389 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | TU Dortmund University | es_ES |