- -

Predicting the Reputation of Pharmaceutical Firms with Financing and Geographical Location Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting the Reputation of Pharmaceutical Firms with Financing and Geographical Location Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaide González, María Ángeles es_ES
dc.contributor.author De la Poza, Elena es_ES
dc.contributor.author Guadalajara Olmeda, María Natividad es_ES
dc.date.accessioned 2022-09-30T18:06:47Z
dc.date.available 2022-09-30T18:06:47Z
dc.date.issued 2021-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186789
dc.description.abstract [EN] Reputation is a strategic asset for firms, but has been poorly studied in the pharmaceutical industry, particularly in relation to their financial and stock-market performance. This work aimed to predict the probability of a firm being included in a pharmaceutical reputation index (Merco and PatientView), and the position it occupies, according to its economic¿financial and stock-market outcomes and its geographical location. Fifty firms with excellent sales in 2019 and their rankings in 2017¿2019 were employed. The methodology followed was logistic regression. Their research and development (R&D) expenditures and dividends strongly influenced them being included in both rankings. Non-Asian pharmaceutical companies were more likely to belong to the two reputation indices than Asian ones, and to occupy the best positions in the Merco ranking. Although no large differences appeared in the firms in both indices, differences were found in the position that pharmaceutical companies occupied in rankings and in the variables that contribute to them occupying these positions. Being in PatientView influenced dividends, sales, and income, while appearing in Merco showed accounting aspects like value in books and debt ratio. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Economic-financial perspective es_ES
dc.subject Geographical location es_ES
dc.subject Listing es_ES
dc.subject Logistic regression es_ES
dc.subject Merco es_ES
dc.subject PatientView es_ES
dc.subject Pharmaceutical es_ES
dc.subject Reputation es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title Predicting the Reputation of Pharmaceutical Firms with Financing and Geographical Location Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math9161893 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Alcaide González, MÁ.; De La Poza, E.; Guadalajara Olmeda, MN. (2021). Predicting the Reputation of Pharmaceutical Firms with Financing and Geographical Location Data. Mathematics. 9(16):1-17. https://doi.org/10.3390/math9161893 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math9161893 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\444777 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
upv.costeAPC 872,76 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem