- -

Gemelos Digitales en la Industria de Procesos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gemelos Digitales en la Industria de Procesos

Mostrar el registro completo del ítem

De Prada, C.; Galán-Casado, S.; Pitarch Pérez, JL.; Sarabia, D.; Galán, A.; Gutiérrez, G. (2022). Gemelos Digitales en la Industria de Procesos. Revista Iberoamericana de Automática e Informática industrial. 19(3):285-296. https://doi.org/10.4995/riai.2022.16901

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186932

Ficheros en el ítem

Metadatos del ítem

Título: Gemelos Digitales en la Industria de Procesos
Otro titulo: Digital twins for process industry
Autor: de Prada, César Galán-Casado, Santos Pitarch Pérez, José Luis Sarabia, Daniel Galán, Anibal Gutiérrez, Gloria
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Digital Twins are virtual plants with an architecture and functionalities that make them actual useful tools for improving many aspects related to process operation, from its control to optimization. Nevertheless, ...[+]


[ES] Los gemelos digitales son plantas virtuales dotadas de una arquitectura y funcionalidades que les convierten en herramientas útiles para mejorar muchos aspectos de la operación de los procesos, desde el control a la ...[+]
Palabras clave: Modelling and decision making in complex systems , Simulation , Real time optimization and control , Parameter and state estimation , Monitoring and performance assessment , Human operator support , Gemelos digitales , Modelado y toma decisiones en sistemas complejos , Soporte al operador humano , Simulación , Control y optimización en tiempo real , Estimación de estados y parámetros , Seguimiento y evaluación del funcionamiento
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2022.16901
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2022.16901
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099312-B-C31/ES/CONTROL Y OPTIMIZACION DE PLANTA COMPLETA INTEGRADOS PARA INDUSRIA 4.0/
Agradecimientos:
Este trabajo ha sido realizado parcialmente gracias al apoyo del MICINN de España a través del proyecto “Control y Optimización de planta completa integrados para Industria 4.0” (InCO4In) con referencia PGC2018-099312-B-C31[+]
Tipo: Artículo

References

Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J. 1999. Nonlinear Predictive Control and Moving Horizon Estimation "" An In-troductory Overview BT. In: Frank, P.M. (Ed.), Advances in Control. Springer London, London, pp. 391-449. DOI: 10.1007/978-1-4471-0853-5_19 https://doi.org/10.1007/978-1-4471-0853-5_19

Arora, N., Biegler, L.T., 2001. Redescending estimators for data reconcilia-tion and parameter estimation. Comput. Chem. Eng. 25, 1585-1599. https://doi.org/10.1016/S0098-1354(01)00721-9

Aveva, 2020. Enabling the Digital Twin through Unified Engineering [WWW Document]. Blog. URL: https://www.aveva.com/en/perspectives/blog/enabling-the-digital-twin-through-unified-engineering/ (accedido 2.7.22). [+]
Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J. 1999. Nonlinear Predictive Control and Moving Horizon Estimation "" An In-troductory Overview BT. In: Frank, P.M. (Ed.), Advances in Control. Springer London, London, pp. 391-449. DOI: 10.1007/978-1-4471-0853-5_19 https://doi.org/10.1007/978-1-4471-0853-5_19

Arora, N., Biegler, L.T., 2001. Redescending estimators for data reconcilia-tion and parameter estimation. Comput. Chem. Eng. 25, 1585-1599. https://doi.org/10.1016/S0098-1354(01)00721-9

Aveva, 2020. Enabling the Digital Twin through Unified Engineering [WWW Document]. Blog. URL: https://www.aveva.com/en/perspectives/blog/enabling-the-digital-twin-through-unified-engineering/ (accedido 2.7.22).

Bernardo, J. M., 2011. Modern Bayesian Inference: Foundations and Objec-tive Methods. In: Bandyopadhyay, P. S. et al. (Ed.) Handbook of the Phi-losophy of Science, Philosophy of Statistics, North-Holland, 7, pp 263-306. DOI: 10.1016/B978-0-444-51862-0.50008-3 https://doi.org/10.1016/B978-0-444-51862-0.50008-3

Birge, J. R., Louveaux, F., 2011. Introduction to stochastic Programming. Springer Verlag, Springer Series in Operations Research and Financial Engineering. https://doi.org/10.1007/978-1-4614-0237-4

Boss, B., Malakuti, S., Lin, S.W., Usländer, T., Clauer, E., Hoffmeister, M., Stojanovic, L., 2020. Digital Twin and Asset Administration Shell Con-cepts and Application in the Industrial Internet and Industrie 4.0. URL https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html

Bröcker, S., Benfer, R., Bortz, M., Engell, S., Knösche, C., Kröner, A., 2021. Process Simulation - Fit for the future? DECHEMA e.V.

Darby, M. L., Nikolaou, M., Jones, J., Nicholson, D., 2011. RTO: An over-view and assessment of current practice. Journal of Process Control, 21, 874-884. DOI: 10.1016/j.jprocont.2011.03.009 https://doi.org/10.1016/j.jprocont.2011.03.009

de Prada, C., Sarabia, D., Gutierrez G., Gomez, E., Marmol, S., Sola, M., Pascual, C., Gonzalez, R., 2017. Integration of RTO and MPC in the hydrogen network of a petrol refinery. Processes, 5(3). DOI: 10.3390/pr5010003 https://doi.org/10.3390/pr5010003

del Rio Chanona, E. A., Petsagkourakis, P., Bradford, E., Graciano, J. A., & Chachuat, B., 2021. Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation. Computers & Chemical Eng., 147, 107249. DOI:0.1016/j.compchemeng.2021.107249 https://doi.org/10.1016/j.compchemeng.2021.107249

Engell, S., Harjunkoski, I., 2012. Optimal operation: Scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121-133. DOI: 10.1016/j.compchemeng.2012.06.039 https://doi.org/10.1016/j.compchemeng.2012.06.039

Fracaro, S. G., Glassey, J., Bernaerts, K., Wilk, M., 2022. Immersive technologies for the training of operators in the process industry: A Systematic Literature Review. Computers & Chemical Engineering, 107691. https://doi.org/10.1016/j.compchemeng.2022.107691

Galán, A.S., 2021. Simulation and optimization methods as decision support tools for operation of oil refinery hydrogen networks. Tesis Doctoral, Universidad de Valladolid. DOI: 10.35376/10324/46435 https://doi.org/10.35376/10324/46435

Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2019. Predictive Simulation Applied to Refinery Hydrogen Networks for Oper-ators' Decision Support. IFAC" Papers On Line 52, 862-867. DOI: 10.1016/j.ifacol.2019.06.170 https://doi.org/10.1016/j.ifacol.2019.06.170

Galan, A., de Prada, C., Gutierrez, G., Sarabia, D., Gonzalez, R., 2021, Real-time reconciled simulation as decision support tool for process operation. Journal of Process Control, 100, 41-64. DOI: 10.1016/j.jprocont.2021.02.003 https://doi.org/10.1016/j.jprocont.2021.02.003

Ge, Z., Song, Z., Ding, S. X., Huang, B., 2017. Data mining and analytics in the process industry: The role of machine learning. IEEE Access, 5, 20590-20616. DOI: 10.1109/ACCESS.2017.2756872 https://doi.org/10.1109/ACCESS.2017.2756872

Grieves, M., 2019. Virtually Intelligent Product Systems: Digital and physical twins. In: S. Flumerfelt, et al. (Ed.), Complex systems engineering: Theo-ry and Practice. American Institute of Aeronautics and Astronautics, Ch. 7, pp. 175-200. DOI: 10.2514/5.9781624105654.0175.0200 https://doi.org/10.2514/5.9781624105654.0175.0200

Jiang, S., Xu, Z., Kamran, M., Zinchik, S., Paheding, S., McDonald, A. G., Bar-Ziv, E., Zavala, V. M., 2021. Using ATR-FTIR spectra and convolu-tional neural networks for characterizing mixed plastic waste. Computers & Chemical Engineering, 155, 107547. DOI: 10.1016/j.compchemeng.2021.107547 https://doi.org/10.1016/j.compchemeng.2021.107547

KBC, 2021. Digitalization Manifesto. Now is the Time. URL https://www.kbc.global/uploads/files/whitepapers/KBC%20Digitalization%20Manifesto_US.pdf

Lee, J. H., Shin, J., Realff, M. J., 2018. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering, 114, 111-121. DOI: 10.1016/j.compchemeng.2017.10.008 https://doi.org/10.1016/j.compchemeng.2017.10.008

Linderoth, L., Wright, S., 2003. Decomposition Algorithms for Stochastic Programming on a Computational Grid. Computational Optimization and Applications, 24. 207-250. DOI: 10.1023/A:1021858008222 https://doi.org/10.1023/A:1021858008222

Marchetti, A.G., François, G., Faulwasser, T., Bonvin, D., 2016. Modifier Adaptation for Real-Time Optimization-Methods and Applications. Pro-cesses, 4, 55. DOI: 10.3390/pr4040055 https://doi.org/10.3390/pr4040055

Masooleh, L. S., Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M., 2022. Distributed state estimation in large-scale processes decomposed into observable subsystems using community detection. Computers & Chemical Engineering, 156, 107544. DOI: 10.1016/j.compchemeng.2021.107544 https://doi.org/10.1016/j.compchemeng.2021.107544

Mesbah, A., 2018. Stochastic model predictive control with active uncertain-ty learning: A survey on dual control. Annual Reviews in Control, 45, 107-117. DOI: 10.1016/j.arcontrol.2017.11.001 https://doi.org/10.1016/j.arcontrol.2017.11.001

Microsoft Corporation, 2020. Azure Digital Twins. URL:https://azure.microsoft.com/es-es/services/digital-twins/#overview (accedido 2.7.22)

Oh, T.H., Souza, L.F.S., Lee, J.M., 2021. Applying Digital Application Platform to Optimize Steam Methane Reforming Process, in: 2021 21st Inter. Conf. on Control, Automation and Systems (ICCAS). pp. 388-393. https://doi.org/10.23919/ICCAS52745.2021.9650053

Oliveira-Silva, E., de Prada, C., Navia, D., 2021. Dynamic optimization integrating modifier adaptation using transient measurements. Computers & Chemical Engineering, 149, 107282. DOI: 10.1016/j.compchemeng.2021.107282 https://doi.org/10.1016/j.compchemeng.2021.107282

Palacín, C. G., Vilas, C., Alonso, A. A., Pitarch, J. L., de Prada, C., 2020. Closed-Loop Scheduling in a Canned Food Factory, 53-2, 10791-10796. In IFAC-PapersOnLine. 21st IFAC World Congress. https://doi.org/10.1016/j.ifacol.2020.12.2863

Pfeiffer, B.-M., Oppelt, M., Leingang, C., 2019. Evolution of a Digital Twin for a Steam Cracker, in: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 467-474. DOI: 10.1109/ETFA.2019.8869449 https://doi.org/10.1109/ETFA.2019.8869449

Pitarch, J. L., Sala, A., de Prada, C., 2019. A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression. Pro-cesses, 7(3), 170. DOI: 10.3390/pr7030170 https://doi.org/10.3390/pr7030170

Qin, S., Jin, T., Van Lehn, R. C., Zavala, V. M., 2021. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neu-ral Networks. The Journal of Physical Chemistry B, 125(37), 10610-10620. DOI: 10.1021/acs.jpcb.1c05264 https://doi.org/10.1021/acs.jpcb.1c05264

Reinbold, P. A., Kageorge, L. M., Schatz, M. F., Grigoriev, R. O., 2021. Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression. Nature communica-tions, 12(1), 1-8. DOI: 10.1038/s41467-021-23479-0 https://doi.org/10.1038/s41467-021-23479-0

Sansana, J., Joswiak, M. N., Castillo, I., Wang, Z., Rendall, R., Chiang, L, H., Reis, M. S., 2021. Recent trends on hybrid modeling for Industry 4.0. Computers & Chemical Engineering, 151, 107365. DOI: 10.1016/j.compchemeng.2021.107365 https://doi.org/10.1016/j.compchemeng.2021.107365

Sarabia, D., de Prada, C., Gomez, E., Gutierrez, G, Cristea, S., Sola, J.M., Gonzalez, R., 2012. Data reconciliation and optimal management of hy-drogen networks in a petrol refinery. Control Engineering Practice, 20(4), 343-354. DOI: 10.1016/j.conengprac.2011.06.009 https://doi.org/10.1016/j.conengprac.2011.06.009

Shafto, M.., Conory, M.., Dolye, R., Glaessgen, E., Kemp, C., LeMoigne J., Wang, L., 2010. DRAFT Modeling, Simulation, Information Technology & Processing Technology Area 11.

Smallwood, R. D., Sondik, E. J., 1973. The optimal control of partially observable Markov processes over a finite horizon. Operations research, 21(5), 1071-1088. DOI: 10.1287/opre.21.5.1071 https://doi.org/10.1287/opre.21.5.1071

Yokogawa, 2022. Digital Twin. URL: https://www.yokogawa.com/solutions/solutions/digitaltransformation/digital-twin/#Resources__White-Papers (accedido 2.7.22).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem