- -

Un esquema de decisiones para intervenciones adaptativas comportamentales de actividad física basado en control predictivo por modelo híbrido: ilustración con Just Walk

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Un esquema de decisiones para intervenciones adaptativas comportamentales de actividad física basado en control predictivo por modelo híbrido: ilustración con Just Walk

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cevallos, Daniel es_ES
dc.contributor.author Martín, César A. es_ES
dc.contributor.author El Mistiri, Mohamed es_ES
dc.contributor.author Rivera, Daniel E. es_ES
dc.contributor.author Hekler, Eric es_ES
dc.date.accessioned 2022-10-04T12:52:02Z
dc.date.available 2022-10-04T12:52:02Z
dc.date.issued 2022-06-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/186933
dc.description.abstract [EN] Physical inactivity is a major contributor to morbidity and mortality worldwide. Many current physical activity behavioral interventions have shown limited success addressing the problem from a long-term perspective that includes maintenance. This paper proposes the design of a decision algorithm for a mobile and wireless health (mHealth) adaptive intervention that is based on control engineering concepts. The design process relies on a behavioral dynamical model based on Social Cognitive Theory (SCT), with a controller formulation based on hybrid model predictive control (HMPC) being used to implement the decision scheme. The discrete and logical features of HMPC coincide naturally with the categorical nature of the intervention components and the logical decisions that are particular to an intervention for physical activity. The intervention incorporates an online controller reconfiguration mode that applies changes in the penalty weights to accomplish the transition between the behavioral initiation and maintenance training stages. Controller performance is illustrated using an ARX model estimated from system identification data of a representative participant for Just Walk, a physical activity intervention designed on the basis of control systems  principles. es_ES
dc.description.abstract [ES] La inactividad física es uno de los principales factores que contribuyen a la morbilidad y la mortalidad en todo el mundo. Muchas intervenciones comportamentales de actividad física en la actualidad han mostrado un éxito limitado al abordar el problema desde una perspectiva a largo plazo que incluye el mantenimiento. Este artículo propone el diseño de un algoritmo de decisión para una intervención adaptativa de salud móvil e inalámbrica (mHealth) que se basa en conceptos de ingeniería de control. El proceso de diseño se basa en un modelo dinámico que representa el comportamiento basada en la Teoría Cognitiva Social (TCS), con una formulación de controlador fundamentada en el control predictivo por modelo híbrido (HMPC por sus siglas en inglés) la cual se utiliza para implementar el esquema de decisión. Las características discretas y lógicas del HMPC coinciden naturalmente con la naturaleza categórica de los componentes de la intervención y las decisiones lógicas que son propias de una intervención para actividad física. La intervención incorpora un modo de reconfiguración del controlador en línea que aplica cambios en los pesos de penalización para lograr la transición entre las etapas de entrenamiento de iniciación comportamental y mantenimiento. Resultados de simulación se presentan para ilustrar el desempeño del controlador utilizando un modelo ARX estimado de datos de un participante representativo de Just Walk, una intervención de actividad física diseñada usando principios de sistemas de control. es_ES
dc.description.sponsorship El apoyo para este trabajo ha sido proporcionado por la Fundación Nacional de Ciencias (NSF por sus siglas en inglés) a través de la subvención IIS-449751, y el Instituto Nacional de la Salud (NIH por sus siglas en inglés) a través de la subvención R01CA244777. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Model predictive control of hybrid systems es_ES
dc.subject Control of physiological and clinical variables es_ES
dc.subject System identification es_ES
dc.subject Control predictivo híbrido es_ES
dc.subject Control automático de variables fisiológicas y clínicas es_ES
dc.subject Identificación de sistemas y estimación de parámetros es_ES
dc.title Un esquema de decisiones para intervenciones adaptativas comportamentales de actividad física basado en control predictivo por modelo híbrido: ilustración con Just Walk es_ES
dc.title.alternative A decision framework for an adaptive behavioral intervention for physical activity using hybrid model predictive control: illustration with Just Walk es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16798
dc.relation.projectID info:eu-repo/grantAgreement/NSF//IIS-449751 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01CA244777 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cevallos, D.; Martín, CA.; El Mistiri, M.; Rivera, DE.; Hekler, E. (2022). Un esquema de decisiones para intervenciones adaptativas comportamentales de actividad física basado en control predictivo por modelo híbrido: ilustración con Just Walk. Revista Iberoamericana de Automática e Informática industrial. 19(3):297-308. https://doi.org/10.4995/riai.2022.16798 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16798 es_ES
dc.description.upvformatpinicio 297 es_ES
dc.description.upvformatpfin 308 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16798 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Adams, M. A., Sallis, J. F., Norman, G. J., Hovell, M. F., Hekler, E. B., Perata, E., 2013. An adaptive physical activity intervention for overweight adults: A randomized controlled trial. PloS one 8 (12), e82901. https://doi.org/10.1371/journal.pone.0082901 es_ES
dc.description.references Bandura, A., 1986. Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall series in social learning theory. es_ES
dc.description.references Carver, C. S., Scheier, M. F., 1998. On the Self Regulation of Behavior. Cambridge University Press. https://doi.org/10.1017/CBO9781139174794 es_ES
dc.description.references Chen, T., Ohlsson, H., Goodwin, G. C., Ljung, L., 2011. Kernel selection in linear system identification part ii: A classical perspective. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, pp. 4326-4331. https://doi.org/10.1109/CDC.2011.6160722 es_ES
dc.description.references Clague, J., Bernstein, L., 2012. Physical activity and cancer. Current Oncology Reports 14 (6), 550-558. https://doi.org/10.1007/s11912-012-0265-5 es_ES
dc.description.references Deshpande, S., Nandola, N. N., Rivera, D. E., Younger, J. W., 2014. Optimized treatment of fibromyalgia using system identification and hybrid model predictive control. Control Engineering Practice 33 (1), 161-173. https://doi.org/10.1016/j.conengprac.2014.09.011 es_ES
dc.description.references Dong, Y., Deshpande, S., Rivera, D. E., Downs, D. S., Savage, J. S., 2014. Hybrid model predictive control for sequential decision policies in adaptive behavioral interventions. In: Proc. ACC. pp. 4198-4203. https://doi.org/10.1109/ACC.2014.6859462 es_ES
dc.description.references El Mistiri, M., Rivera, D. E., Klasnja, P., Park, J., Hekler, E. B., 2022. Model predictive control strategies for optimized mhealth interventions for physical activity. In: 2022 American Control Conference (ACC). submitted. es_ES
dc.description.references Ferster, C. B., 1970. Schedules of reinforcement with Skinner. In: Dews, P. B. (Ed.), Festschrift for B. F. Skinner. Century psychology series. New York, Appleton-Century-Crofts, pp. 37-46. es_ES
dc.description.references Freigoun, M. T., Mart ́ın, C. A., Magann, A. B., Rivera, D. E., Phatak, S. S., Korinek, E. V., Hekler, E. B., 2017. System identification of just walk: A behavioral mhealth intervention for promoting physical activity. In: 2017 American Control Conference (ACC). pp. 116-121. https://doi.org/10.23919/ACC.2017.7962940 es_ES
dc.description.references Guillaume, P., Schoukens, J., Pintelon, R., Kollar, I., 1991. Crest-factor minimization using nonlinear Chebyshev approximation methods. IEEE Transactions on Instrumentation and Measurement 40 (6), 982-989. https://doi.org/10.1109/19.119778 es_ES
dc.description.references Hekler, E., 2015. Just Walk Study. http://justwalkstudy.weebly.com/, [Online; accessed September-23-2015]. es_ES
dc.description.references Hekler, E., Rivera, D. E., 2021. Optimizing individualized and adaptive mhealth interventions via control systems engineering methods, R01CA244777: National Institute of Health, National Cancer Institute. es_ES
dc.description.references Hekler, E. B., Rivera, D. E., Martin, C. A., Phatak, S. S., Freigoun, M. T., Korinek, E., Klasnja, P., Adams, M. A., Buman, M. P., 2018. Tutorial for using control systems engineering to optimize adaptive mobile health interventions. Journal of medical Internet research 20 (6), e8622. https://doi.org/10.2196/jmir.8622 es_ES
dc.description.references Kha, R., Rivera, D. E., Klasjna, P., Hekler, E., 2022. Model personalization in behavioral interventions using Model-on-Demand estimation and discrete simultaneous perturbation stochastic approximation. In: 2022 American Control Conference (ACC). p. submitted. es_ES
dc.description.references King, A. C., Hekler, E. B., Grieco, L. A., Winter, S. J., Sheats, J.L., Buman, M. P., Banerjee, B., Robinson, T. N., Cirimele, J., 2013. Harnessing different motivational frames via mobile phones to promote daily physical activity and reduce sedentary behavior in aging adults. PLoS ONE 8 (4), e62613. https://doi.org/10.1371/journal.pone.0062613 es_ES
dc.description.references Korinek, E. V., Phatak, S. S., Martin, C. A., Freigoun, M. T., Rivera, D. E., Adams, M. A., Klasnja, P., Buman, M. P., Hekler, E. B., 2018. Adaptive step goals and rewards: a longitudinal growth model of daily steps for a smartphone-based walking intervention. Journal of behavioral medicine 41 (1), 74-86. https://doi.org/10.1007/s10865-017-9878-3 es_ES
dc.description.references Ljung, L., Mar 1994. From Data to Model: A Guided Tour. In: International IEE Conference on Control. Warwick, England, pp. 422-430. https://doi.org/10.1049/cp:19940169 es_ES
dc.description.references Ljung, L., 1999. System Identification: Theory for the User, 2nd Edition. Upper Saddle River, NJ: Prentice Hall PTR. es_ES
dc.description.references Ljung, L., Singh, R., Chen, T., 2015. Regularization features in the system identification toolbox. IFAC-PapersOnLine 48 (28), 745-750, 17th IFAC Symposium on System Identification SYSID 2015. https://doi.org/10.1016/j.ifacol.2015.12.219 es_ES
dc.description.references Martín, C. A., 2016. A system identification and control engineering approachfor optimizing mhealth behavioral interventions based on social cognitivetheory. Ph.D. thesis, Electrical Engineering, Arizona State University es_ES
dc.description.references Martín, C. A., Deshpande, S., Hekler, E. B., Rivera, D. E., 2015a. A system identification approach for improving behavioral interventions based on Social Cognitive Theory. In: Proc. ACC. pp. 5878-5883. https://doi.org/10.1109/ACC.2015.7172261 es_ES
dc.description.references Martín, C. A., Rivera, D. E., Hekler, E. B., 2015b. Design of informative identification experiments for behavioral interventions. In: Proceedings of the 17th IFAC Symposium on System Identification. pp. 1325-1330. https://doi.org/10.1016/j.ifacol.2015.12.315 es_ES
dc.description.references Martín, C. A., Rivera, D. E., Hekler, E. B., 2015c. An identification test monitoring procedure for MIMO systems based on statistical uncertainty estimation. In: Proc. 54th IEEE CDC. pp. 2719-2724. https://doi.org/10.1109/CDC.2015.7402627 es_ES
dc.description.references Martín, C. A., Rivera, D. E., Hekler, E. B., 2016. A decision framework for an adaptive behavioral intervention for physical activity using hybrid model predictive control. In: Proceedings of the American Control Conference. pp. 3576-3581. https://doi.org/10.1109/ACC.2016.7525468 es_ES
dc.description.references Martín, C. A., Rivera, D. E., Hekler, E. B., Riley, W. T., Buman, M. P., Adams, M. A., Magann, A. B., 2020. Development of a control-oriented model of Social Cognitive Theory for optimized mHealth behavioral interventions. IEEE Transactions on Control Systems Technology 28 (2), 331-346. https://doi.org/10.1109/TCST.2018.2873538 es_ES
dc.description.references McGinnis, J. M., Williams-Russo, P., Knickman, J. R., 2002. The case for more active policy attention to health promotion. Health Affairs 21 (2), 78-93. https://doi.org/10.1377/hlthaff.21.2.78 es_ES
dc.description.references Morari, M., Zafiriou, E., 1989. Robust Process Control. Prentice-Hall International. es_ES
dc.description.references Nandola, N. N., Rivera, D. E., 2013. An improved formulation of hybrid model predictive control with application to production-inventory systems. IEEE Trans. on Control Systems Technology 21 (1), 121-135. https://doi.org/10.1109/TCST.2011.2177525 es_ES
dc.description.references Navarro-Barrientos, J. E., Rivera, D. E., Collins, L. M., 2011. A dynamical model for describing behavioural interventions for weight loss and body composition change. Mathematical and Computer Modelling of Dynamical Systems 17 (2), 183-203. https://doi.org/10.1080/13873954.2010.520409 es_ES
dc.description.references Payne, H. E., Lister, C., West, J. H., Bernhardt, J. M., 2015. Behavioral functionality of mobile apps in health interventions: A systematic review of the literature. JMIR mHealth and uHealth 3 (1), e20. https://doi.org/10.2196/mhealth.3335 es_ES
dc.description.references Phatak, S. S., Freigoun, M. T., Martín, C. A., Rivera, D. E., Korinek, E. V., Adams, M. A., Buman, M. P., Klasnja, P., Hekler, E. B., 2018. Modeling individual differences: A case study of the application of system identification for personalizing a physical activity intervention. Journal of Biomedical Informatics 79, 82-97. https://doi.org/10.1016/j.jbi.2018.01.010 es_ES
dc.description.references Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L., 2014. Kernel methods in system identification, machine learning and function estimation: A survey. Automatica 50 (3), 657-682. https://doi.org/10.1016/j.automatica.2014.01.001 es_ES
dc.description.references Rivera, D. E., Lee, H., Mittelmann, H. D., Braun, M. W., 2009. Constrained multisine input signals for plant-friendly identification of chemical process systems. Journal of Process Control 19 (4), 623-635. https://doi.org/10.1016/j.jprocont.2008.08.006 es_ES
dc.description.references Shiffman, S., Stone, A. A., Hufford, M. R., 2008. Ecological momentary assessment. Clinical Psychology 4 (1), 1-32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415 es_ES
dc.description.references Timms, K. P., Rivera, D. E., Collins, L. M., Piper, M. E., 2014a. Continuous-time system identification of a smoking cessation intervention,. International Journal of Control 87 (7), 1423-1437. https://doi.org/10.1080/00207179.2013.874080 es_ES
dc.description.references Timms, K. P., Rivera, D. E., Piper, M. E., Collins, L. M., 2014b. A hybrid model predictive control strategy for optimizing a smoking cessation intervention. In: Proc. ACC. pp. 2389 - 2394. https://doi.org/10.1109/ACC.2014.6859466 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem