- -

Radiationless anapole states in on-chip photonics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiationless anapole states in on-chip photonics

Mostrar el registro completo del ítem

Díaz-Escobar, E.; Bauer, T.; Pinilla-Cienfuegos, E.; Barreda, ÁI.; Griol Barres, A.; Kuipers, K.; Martínez Abietar, AJ. (2021). Radiationless anapole states in on-chip photonics. Light: Science & Applications. 10(1):1-12. https://doi.org/10.1038/s41377-021-00647-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186987

Ficheros en el ítem

Metadatos del ítem

Título: Radiationless anapole states in on-chip photonics
Autor: Díaz-Escobar, Evelyn Bauer, Thomas Pinilla-Cienfuegos, Elena Barreda, Ángela I. Griol Barres, Amadeu Kuipers, K. Martínez Abietar, Alejandro José
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] High-index nanoparticles are known to support radiationless states called anapoles, where dipolar and toroidal moments interfere to inhibit scattering to the far field. In order to exploit the striking properties ...[+]
Palabras clave: Anapoles , Silicon photonics , Mie resonances
Derechos de uso: Reconocimiento (by)
Fuente:
Light: Science & Applications. (eissn: 2047-7538 )
DOI: 10.1038/s41377-021-00647-x
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41377-021-00647-x
Coste APC: 3700
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/MCIU//PRX18%2F00126/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C22/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICIO A TEMPERATURA AMBIENTE/
info:eu-repo/grantAgreement/GVA//BEST%2F2020%2F178/
info:eu-repo/grantAgreement/EC/FP7/340438/EU
info:eu-repo/grantAgreement/MICINN//CAS19%2F00349/
info:eu-repo/grantAgreement/MINECO//FJCI-2015-27228/ES/FJCI-2015-27228/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GRISOLIAP%2F2018%2F164//AYUDA SANTIAGO GRISOLIA PROYECTO: MANIPULACIÓN DE FOTONES EN CHIPS DE SILICIO USANDO OPTOMECÁNICA DE CAVIDADES/
info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F033//INCORPORACION DE LA TECNOLOGIA DE FABRICACION DE LAMINAS DELGADAS DE CARBURO DE SILICIO (SIC) PARA SU APLICACION EN NANOFOTONICA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
[-]
Agradecimientos:
E.D.E. acknowledges funding from Generalitat Valenciana under grant GRISOLIAP/2018/164. A.I.B. acknowledges financial support by the Alexander von Humboldt Foundation. T.B. and L.K. acknowledge support from the European ...[+]
Tipo: Artículo

References

Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7, 1800783 (2019).

Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015). [+]
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7, 1800783 (2019).

Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015).

Wang, R. & Dal Negro, L. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express 24, 19048–19062 (2016).

Wei, L. et al. Excitation of the radiationless anapole mode. Optica 3, 799–802 (2016).

Luk’yanchuk, B. et al. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A 95, 063820 (2017).

Wu, P. C. et al. Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018).

Li, S. Q. & Crozier, K. B. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B 97, 245423 (2018).

Monticone, F. et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photon. 6, 3108–3114 (2019).

Baryshnikova, K. V. et al. Optical anapoles: concepts and applications. Adv. Opt. Mater. 7, 1801350 (2019).

Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

Luk’yanchuk, B. et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 375, 20160069 (2017).

Yang, Y. Q., Zenin, V. A. & Bozhevolnyi, S. I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photon. 5, 1960–1966 (2018).

Grinblat, G. et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 11, 953–960 (2017).

Grinblat, G. et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

Timofeeva, M. et al. Anapoles in free-standing III-V nanodisks enhancing second-harmonic generation. Nano Lett. 18, 3695–3702 (2018).

Baranov, D. G. et al. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks. ACS Photon. 5, 2730–2736 (2018).

Sohler, W. & De La Rue, R. Integrated optics–new material platforms, devices and applications. Laser Photon. Rev. 6, A21–A22 (2012).

Soltani, M., Yegnanarayanan, S. & Adibi, A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Exp. 15, 4694–4704 (2007).

Rodríguez-Fortuño, F. J. et al. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014).

Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511 (2010).

Borghi, M. et al. Nonlinear silicon photonics. J. Opt. 19, 093002 (2017).

Colom, R. et al. Enhanced four-wave mixing in doubly resonant Si nanoresonators. ACS Photon. 6, 1295–1301 (2019).

Bobylev, D. A., Smirnova, D. A. & Gorlach, M. A. Nonlocal response of Mie-resonant dielectric particles. Phys. Rev. B 102, 115110 (2020).

Patoux, A. et al. Polarizabilities of complex individual dielectric or plasmonic nanostructures. Phys. Rev. B 101, 235418 (2020).

Davis, T. J., Vernon, K. C. & Gómez, D. E. Effect of retardation on localized surface plasmon resonances in a metallic nanorod. Opt. Exp. 17, 23655–23663 (2009).

Yu, R. W., Liz-Marzán, L. M. & De Abajo, F. J. G. Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017).

Espinosa-Soria, A., Griol, A. & Martínez, A. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Opt. Exp. 24, 9592–9601 (2016).

Espinosa-Soria, A. et al. Coherent control of a plasmonic nanoantenna integrated on a silicon chip. ACS Photon. 5, 2712–2717 (2018).

Gongora, J. S. T. et al. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017).

Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, Cambridge, 2006).

Espinosa-Soria, A. & Martínez, A. Transverse spin and spin-orbit coupling in silicon waveguides. IEEE Photon. Technol. Lett. 28, 1561–1564 (2016).

Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009).

Le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photon. 8, 43–46 (2014).

Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010).

Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010).

Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

Karabchevsky, A. et al. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem