- -

Radiationless anapole states in on-chip photonics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radiationless anapole states in on-chip photonics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Escobar, Evelyn es_ES
dc.contributor.author Bauer, Thomas es_ES
dc.contributor.author Pinilla-Cienfuegos, Elena es_ES
dc.contributor.author Barreda, Ángela I. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Kuipers, K. es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2022-10-04T18:04:44Z
dc.date.available 2022-10-04T18:04:44Z
dc.date.issued 2021-10-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186987
dc.description.abstract [EN] High-index nanoparticles are known to support radiationless states called anapoles, where dipolar and toroidal moments interfere to inhibit scattering to the far field. In order to exploit the striking properties arising from these interference conditions in photonic integrated circuits, the particles must be driven in-plane via integrated waveguides. Here, we address the excitation of electric anapole states in silicon disks when excited on-chip at telecom wavelengths. In contrast to normal illumination, we find that the anapole condition¿identified by a strong reduction of the scattering¿does not overlap with the near-field energy maximum, an observation attributed to retardation effects. We experimentally verify the two distinct spectral regions in individual disks illuminated in-plane from closely placed waveguide terminations via far-field and near-field measurements. Our finding has important consequences concerning the use of anapole states and interference effects of other Mie-type resonances in high-index nanoparticles for building complex photonic integrated circuitry. es_ES
dc.description.sponsorship E.D.E. acknowledges funding from Generalitat Valenciana under grant GRISOLIAP/2018/164. A.I.B. acknowledges financial support by the Alexander von Humboldt Foundation. T.B. and L.K. acknowledge support from the European Research Council (ERC) Advanced Investigator Grant no. 340438-CONSTANS. E.P.-C. gratefully acknowledges support from the Spanish Ministry of Science and Innovation under grant FJCI-2015-27228 and postdoctoral research stay grant CAS19/00349. A.M. thanks funding from Generalitat Valenciana (Grants No. PROMETEO/2019/123, BEST/2020/178 and IDIFEDER/2018/033) and Spanish Ministry of Science, Innovation and Universities (Grants No. PRX18/00126 and PGC2018-094490-BC22). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Light: Science & Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Anapoles es_ES
dc.subject Silicon photonics es_ES
dc.subject Mie resonances es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Radiationless anapole states in on-chip photonics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41377-021-00647-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C21/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//PRX18%2F00126/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094490-B-C22/ES/AVANZANDO EN CAVIDADES OPTOMECANICAS DE SILICIO A TEMPERATURA AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2020%2F178/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/340438/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CAS19%2F00349/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2015-27228/ES/FJCI-2015-27228/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//GRISOLIAP%2F2018%2F164//AYUDA SANTIAGO GRISOLIA PROYECTO: MANIPULACIÓN DE FOTONES EN CHIPS DE SILICIO USANDO OPTOMECÁNICA DE CAVIDADES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F033//INCORPORACION DE LA TECNOLOGIA DE FABRICACION DE LAMINAS DELGADAS DE CARBURO DE SILICIO (SIC) PARA SU APLICACION EN NANOFOTONICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F123//NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Díaz-Escobar, E.; Bauer, T.; Pinilla-Cienfuegos, E.; Barreda, ÁI.; Griol Barres, A.; Kuipers, K.; Martínez Abietar, AJ. (2021). Radiationless anapole states in on-chip photonics. Light: Science & Applications. 10(1):1-12. https://doi.org/10.1038/s41377-021-00647-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41377-021-00647-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2047-7538 es_ES
dc.identifier.pmid 34608131 es_ES
dc.identifier.pmcid PMC8490413 es_ES
dc.relation.pasarela S\446840 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). es_ES
dc.description.references Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7, 1800783 (2019). es_ES
dc.description.references Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015). es_ES
dc.description.references Wang, R. & Dal Negro, L. Engineering non-radiative anapole modes for broadband absorption enhancement of light. Opt. Express 24, 19048–19062 (2016). es_ES
dc.description.references Wei, L. et al. Excitation of the radiationless anapole mode. Optica 3, 799–802 (2016). es_ES
dc.description.references Luk’yanchuk, B. et al. Hybrid anapole modes of high-index dielectric nanoparticles. Phys. Rev. A 95, 063820 (2017). es_ES
dc.description.references Wu, P. C. et al. Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018). es_ES
dc.description.references Li, S. Q. & Crozier, K. B. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole. Phys. Rev. B 97, 245423 (2018). es_ES
dc.description.references Monticone, F. et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photon. 6, 3108–3114 (2019). es_ES
dc.description.references Baryshnikova, K. V. et al. Optical anapoles: concepts and applications. Adv. Opt. Mater. 7, 1801350 (2019). es_ES
dc.description.references Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983). es_ES
dc.description.references Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017). es_ES
dc.description.references Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). es_ES
dc.description.references Luk’yanchuk, B. et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility. Philos. Trans. Ser. A, Math. Phys. Eng. Sci. 375, 20160069 (2017). es_ES
dc.description.references Yang, Y. Q., Zenin, V. A. & Bozhevolnyi, S. I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photon. 5, 1960–1966 (2018). es_ES
dc.description.references Grinblat, G. et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 11, 953–960 (2017). es_ES
dc.description.references Grinblat, G. et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016). es_ES
dc.description.references Timofeeva, M. et al. Anapoles in free-standing III-V nanodisks enhancing second-harmonic generation. Nano Lett. 18, 3695–3702 (2018). es_ES
dc.description.references Baranov, D. G. et al. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks. ACS Photon. 5, 2730–2736 (2018). es_ES
dc.description.references Sohler, W. & De La Rue, R. Integrated optics–new material platforms, devices and applications. Laser Photon. Rev. 6, A21–A22 (2012). es_ES
dc.description.references Soltani, M., Yegnanarayanan, S. & Adibi, A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Exp. 15, 4694–4704 (2007). es_ES
dc.description.references Rodríguez-Fortuño, F. J. et al. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014). es_ES
dc.description.references Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett. 10, 1506–1511 (2010). es_ES
dc.description.references Borghi, M. et al. Nonlinear silicon photonics. J. Opt. 19, 093002 (2017). es_ES
dc.description.references Colom, R. et al. Enhanced four-wave mixing in doubly resonant Si nanoresonators. ACS Photon. 6, 1295–1301 (2019). es_ES
dc.description.references Bobylev, D. A., Smirnova, D. A. & Gorlach, M. A. Nonlocal response of Mie-resonant dielectric particles. Phys. Rev. B 102, 115110 (2020). es_ES
dc.description.references Patoux, A. et al. Polarizabilities of complex individual dielectric or plasmonic nanostructures. Phys. Rev. B 101, 235418 (2020). es_ES
dc.description.references Davis, T. J., Vernon, K. C. & Gómez, D. E. Effect of retardation on localized surface plasmon resonances in a metallic nanorod. Opt. Exp. 17, 23655–23663 (2009). es_ES
dc.description.references Yu, R. W., Liz-Marzán, L. M. & De Abajo, F. J. G. Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017). es_ES
dc.description.references Espinosa-Soria, A., Griol, A. & Martínez, A. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Opt. Exp. 24, 9592–9601 (2016). es_ES
dc.description.references Espinosa-Soria, A. et al. Coherent control of a plasmonic nanoantenna integrated on a silicon chip. ACS Photon. 5, 2712–2717 (2018). es_ES
dc.description.references Gongora, J. S. T. et al. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017). es_ES
dc.description.references Novotny, L. & Hecht, B. Principles of Nano-Optics. (Cambridge University Press, Cambridge, 2006). es_ES
dc.description.references Espinosa-Soria, A. & Martínez, A. Transverse spin and spin-orbit coupling in silicon waveguides. IEEE Photon. Technol. Lett. 28, 1561–1564 (2016). es_ES
dc.description.references Cai, X. L. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012). es_ES
dc.description.references Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009). es_ES
dc.description.references Le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photon. 8, 43–46 (2014). es_ES
dc.description.references Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010). es_ES
dc.description.references Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010). es_ES
dc.description.references Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). es_ES
dc.description.references Karabchevsky, A. et al. On-chip nanophotonics and future challenges. Nanophotonics 9, 3733–3753 (2020). es_ES
upv.costeAPC 3700 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem