Ahmadi-Moshkenani, P., Johansen, T. A., Olaru, S., 2018. Combinatorial ap-proach toward multiparametric quadratic programming based on characteri-zing adjacent critical regions 63 (10), 3221-3231. https://doi.org/10.1109/TAC.2018.2791479
Borrelli, F., Baoti ́c, M., Pekar, J., Stewart, G., 2010. On the computation oflinear model predictive control laws. Automatica 46 (6), 1035 - 1041. https://doi.org/10.1016/j.automatica.2010.02.031
Cairano, S. D., Brand, M., Bortoff, S. A., 2013. Projection-free parallel quadra-tic programming for linear model predictive control. Int. J. Control 86 (8),1367-1385. https://doi.org/10.1080/00207179.2013.801080
[+]
Ahmadi-Moshkenani, P., Johansen, T. A., Olaru, S., 2018. Combinatorial ap-proach toward multiparametric quadratic programming based on characteri-zing adjacent critical regions 63 (10), 3221-3231. https://doi.org/10.1109/TAC.2018.2791479
Borrelli, F., Baoti ́c, M., Pekar, J., Stewart, G., 2010. On the computation oflinear model predictive control laws. Automatica 46 (6), 1035 - 1041. https://doi.org/10.1016/j.automatica.2010.02.031
Cairano, S. D., Brand, M., Bortoff, S. A., 2013. Projection-free parallel quadra-tic programming for linear model predictive control. Int. J. Control 86 (8),1367-1385. https://doi.org/10.1080/00207179.2013.801080
Camacho, E., Bordons, C., 2004. Model Predictive Control. Advanced Text-books in Control and Signal Processing. Springer, London.
Cimini, G., Bemporad, A., Dec 2017. Exact complexity certification of active-set methods for quadratic programming. IEEE Trans. Automat. Contr.62 (12), 6094-6109. https://doi.org/10.1109/TAC.2017.2696742
Cutler, C. R., Ramaker, B. L., 1980. Dynamic matrix control: A computer con-trol algorithm. In: Proc. Automatic Control Conference. Vol. 17. p. 72.
Fernandes, D., Haque, M. E., Palanki, S., Rios, S. G., Chen, D., 2020. DMCcontroller design for an integrated allam cycle and air separation plant. Com-put. Chem. Eng. 141, 107019. https://doi.org/10.1016/j.compchemeng.2020.107019
Ferreau, H., Almér, S., Verschueren, R., Diehl, M., Frick, D., Domahidi, A.,Jerez, J., Stathopoulos, G., Jones, C., Dec 2017. Embedded optimizationmethods for industrial automatic control. In: Proc. 20th IFAC World Congr.Toulouse, France.
Goldstein, T., O'Donoghue, B., Setzer, S., Baraniuk, R., 2014. Fast alternatingdirection optimization methods. SIAM J. on Imaging Sciences 7 (3), 1588-1623. https://doi.org/10.1137/120896219
He, X., Lima, F. V., 2019. Development and implementation of advanced con-trol strategies for power plant cycling with carbon capture. Comput. Chem.Eng. 121, 497 - 509. https://doi.org/10.1016/j.compchemeng.2018.11.004
Herceg, M., Jones, C. N., Morari, M., 2015. Dominant speed factors of activeset methods for fast MPC. Optim. Contr. Appl. Met. 36 (5), 608-627. https://doi.org/10.1002/oca.2140
Kiencke, U., Nielsen, L., 2000. Automotive Control Systems: For Engine, Dri-veline and Vehicle, 1st Edition. Springer-Verlag, Berlin, Heidelberg.
Kvasnica, M., Tak ́acs, B., Holaza, J., Di Cairano, S., 2015. On region-free ex-plicit model predictive control. In: Proc. 54th IEEE Conf. on Decision andControl (CDC). pp. 3669-3674. https://doi.org/10.1109/CDC.2015.7402788
Lee, J. H., Morari, M., Garcia, C. E., 1994. State-space interpretation of modelpredictive control. Automatica 30 (4), 707 - 717. https://doi.org/10.1016/0005-1098(94)90159-7
Lima, D. M., Normey-Rico, J. E., Plucenio, A., Santos, T. L. M., Gomes, M. V.,2014. Improving robustness and disturbance rejection performance with in-dustrial MPC. In: Proc. 20th Brazilian Conference on Automation (CBA).pp. 3229-3236.
Morato, M. M., Normey-Rico, J. E., Sename, O., 2021. An input-to-state stablemodel predictive control framework for Lipschitz nonlinear parameter var-ying systems. International Journal of Robust and Nonlinear Control 31 (17),8239-8272. https://doi.org/10.1002/rnc.5243
Morato, M. M., Q., N. M., Sename, O., Dugard, L., 2019. Design of a fastreal-time LPV model predictive control system for semi-active suspensioncontrol of a full vehicle. Journal of the Franklin Institute 356 (3), 1196-1224. https://doi.org/10.1016/j.jfranklin.2018.11.016
Nesterov, Y., 1983. A method of solving a convex programming problem withconvergence rate o(1/k2). Soviet Mathematics Doklady 27 (2), 372-376.
O'Donoghue, B., Stathopoulos, G., Boyd, S., Nov 2013. A splitting method foroptimal control 21 (6), 2432-2442.Patrinos, P., Bemporad, A., Jan 2014. An accelerated dual gradient-projectionalgorithm for embedded linear model predictive control 59 (1), 18-33. https://doi.org/10.1109/TAC.2013.2275667
Patrinos, P., Bemporad, A., Jan 2014. An accelerated dual gradient-projectionalgorithm for embedded linear model predictive control 59 (1), 18-33. https://doi.org/10.1109/TAC.2013.2275667
Peccin, V. B., Lima, D. M., Flesch, R. C. C., Normey-Rico, J. E., 2019. Fastgeneralized predictive control based on accelerated dual gradient projectionmethod. In: Proc. 12th IFAC Symposium on Dynamics and Control of Pro-cess Systems, including Biosystems (DYCOPS). pp. 474-479.
Peccin, V. B., Lima, D. M., Flesch, R. C. C., Normey-Rico, J. E., 2020. Fast constrained generalized predictive control with ADMM embedded in an FP-GA. IEEE Latin America Trans. 18 (2), 422-429. https://doi.org/10.1109/TLA.2020.9085299
Peccin, V. B., Lima, D. M., Flesch, R. C. C., Normey-Rico, J. E., 2021. Fastalgorithms for constrained generalised predictive control with on-line opti-misation. IET Control Theory & Applications 15 (4), 545-558. https://doi.org/10.1049/cth2.12060
Pistikopoulos, E. N., Diangelakis, N. A., Oberdieck, R., Papathanasiou, M. M.,Nascu, I., Sun, M., 2015. PAROC""An integrated framework and softwareplatform for the optimisation and advanced model-based control of processsystems. Chem. Eng. Science 136, 115-138. https://doi.org/10.1016/j.ces.2015.02.030
Pu, Y., Zeilinger, M. N., Jones, C. N., Feb 2017. Complexity certification of thefast alternating minimization algorithm for linear MPC 62 (2), 888-893. https://doi.org/10.1109/TAC.2016.2561407
Roldao-Lopes, A., Shahzad, A., Constantinides, G. A., Kerrigan, E. C., April2009. More flops or more precision? Accuracy parameterizable linear equa-tion solvers for model predictive control. In: Proc. 17th IEEE Symposiumon Field-Programmable Custom Computing Machines. pp. 209-216. https://doi.org/10.1109/FCCM.2009.19
Wang, J., Xu, Z., Song, C., Yao, Y., Zhao, J., 2020. A distributed model pre-dictive control algorithm with the gap metric output feedback decoupling.Comput. Chem. Eng., 107167. https://doi.org/10.1016/j.compchemeng.2020.107167
Wang, Y., Boyd, S., March 2010. Fast model predictive control using onlineoptimization. IEEE Transactions on Control Systems Technology 18 (2),267-278. https://doi.org/10.1109/TCST.2009.2017934
Wills, A., Mills, A., Ninness, B., 2011. FPGA implementation of an interior-point solution for linear model predictive control. In: Proc. 18th IFAC World Congress. https://doi.org/10.3182/20110828-6-IT-1002.02857
Wojtulewicz, A., Ławry ́nczuk, M., 2018. Implementation of multiple-input multiple-output dynamic matrix control algorithm for fast processes usingfield programmable gate array. In: Proc. 15th IFAC Conference on Program-mable Devices and Embedded Systems (PDeS). pp. 324 - 329. https://doi.org/10.1016/j.ifacol.2018.07.174
[-]