- -

Aplicaciones de control predictivo en plantas solares CCP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aplicaciones de control predictivo en plantas solares CCP

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallego Len, Antonio J. es_ES
dc.contributor.author Sánchez del Pozo, Adolfo J. es_ES
dc.contributor.author Camacho, Eduardo F. es_ES
dc.date.accessioned 2022-10-05T06:51:54Z
dc.date.available 2022-10-05T06:51:54Z
dc.date.issued 2022-06-29
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/187018
dc.description.abstract [EN] One of the main methods to improve the efficiency in the use of solar energy is the application of advanced control techniques.This work develops a state of the art of predictive control applications to small and large scale solar trough plants. Two realapplications are presented. The first one is designed to the old ACUREX experimental plant at the Plataforma solar de Almer ??a(PSA). The second one is the design of a model predictive controller for large scale commercial CCP plants that is installed in 13Spanish plants as well as in the Mojave solar trough plants in California (USA). Finally, two real results obtained at the MojaveBeta plant are presented showing the adequate performance of the controller. es_ES
dc.description.abstract [ES] Uno de los principales métodos para mejorar la eficiencia en el uso y aprovechamiento de la energía solar es la aplicación de técnicas avanzadas de control. En este trabajo se presenta un estado del arte de las aplicaciones de control predictivo en plantassolares de pequeña y gran escala. Se presentan además dos aplicaciones reales: una que se diseño para la planta experimental ACUREX en la Plataforma solar de Almería (PSA). El controlador fue probado en el campo real con buen desempeño. La otra aplicación describe el diseño de un controlador predictivo para plantas comerciales de colectores cilindro parabólicos (CCP) que está instalado en 13 plantas Españolas así como en las plantas de Mojave en California (USA). Se muestran dos resultados reales obtenidos en la planta Mojave Beta con el controlador propuesto. es_ES
dc.description.sponsorship Los autores quieren agradecer a Atlantica Sustainable Infrastructure por financiar y participar en la realización de este proyecto. Los autores agradecen tambien al European Research Council por financiar el trabajo mediante la Advanced Grant OCONTSOLAR (Project ID: 789051). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Automatic Control es_ES
dc.subject Solar Energy es_ES
dc.subject Predictive Controller es_ES
dc.subject Parabolic-trough es_ES
dc.subject Optimization es_ES
dc.subject Control Predictivo es_ES
dc.subject Control automático es_ES
dc.subject Energía solar es_ES
dc.subject Optimización es_ES
dc.subject Cilindro-parabólico es_ES
dc.title Aplicaciones de control predictivo en plantas solares CCP es_ES
dc.title.alternative Application of model predictive control to parabolic trough thermal solar plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.16664
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/789051/EU/Optimal Control of Thermal Solar Energy Systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gallego Len, AJ.; Sánchez Del Pozo, AJ.; Camacho, EF. (2022). Aplicaciones de control predictivo en plantas solares CCP. Revista Iberoamericana de Automática e Informática industrial. 19(3):309-317. https://doi.org/10.4995/riai.2022.16664 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.16664 es_ES
dc.description.upvformatpinicio 309 es_ES
dc.description.upvformatpfin 317 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\16664 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Atlantica Sustainable Infrastructure plc es_ES
dc.description.references Agency, U. S. E. P., 2018. Avoided emissions and generation tool (avert). URL: https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert es_ES
dc.description.references Alsharkawi, A., Rossiter, J. A., 2017. Towards an improved gain scheduling predictive control strategy for a solar thermal power plant. IET Control Theory & Applications 11(12), 1938-1947. https://doi.org/10.1049/iet-cta.2016.1319 es_ES
dc.description.references Alvarez, J., L.Yebra, M.Berenguel, 2008. Adaptative repetitive control for resonance cancellation of a distributed solar collector fields. International Journal of Adaptative Control and Signal Processing 23, 331-352. https://doi.org/10.1002/acs.1045 es_ES
dc.description.references Andrade, G. A., Pagano, D. J., Alvarez, J. D., Berenguel, M., 2013. A practical nmpc with robustness of stability applied to distributed solar power plants. Solar Energy 92, 106-122. https://doi.org/10.1016/j.solener.2013.02.013 es_ES
dc.description.references Badal, F. R., Das, P., Sarker, S. K., Das, S. K., Apr 2019. A survey on control issues in renewable energy integration and microgrid. Protection and Control of Modern Power Systems 4 (1), 8. https://doi.org/10.1186/s41601-019-0122-8 es_ES
dc.description.references Berenguel, M., 1996. Contributions to the control of distributed solar collectors. Ph.D. thesis, Universidad de Sevilla. es_ES
dc.description.references Berenguel, M., Arahal, M. R., Camacho, E. F., 1997. Modeling free response of a solar plant for predictive control. In: Proceedings of the 11th IFAC Symposium on Systems Identification SYSID1997. https://doi.org/10.1016/S1474-6670(17)43011-4 es_ES
dc.description.references Berenguel, M., Cirre, C. M., Klempous, R., Maciejewski, H., Nikodem, M., Nikodem, J., Rudas, I., Valenzuela, L., 2005. Hierarchical control of a distributed solar collector field. Computer Aided Systems Theory EUROCAST 2005 3643, 614-620. https://doi.org/10.1007/11556985_82 es_ES
dc.description.references Blanco, M. J., Santigosa, L. R., 2017. Advances in Concentrating Solar Thermal Research and Technology, 1st Edition. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100516-3.00001-0 es_ES
dc.description.references Camacho, E. F., Berenguel, M., August 1994. Application of generalized predictive control to a solar power plant. In: The Third IEEE Conference on Control Applications. Glasgow. https://doi.org/10.1109/CCA.1994.381468 es_ES
dc.description.references Camacho, E. F., Berenguel, M., Gallego, A. J., 2013. Control of thermal solar energy plants. Journal of process control. https://doi.org/10.1016/j.jprocont.2013.09.026 es_ES
dc.description.references Camacho, E. F., Berenguel, M., Rubio, F., Martınez., D., 2012. Control of Solar Energy Systems. Springer-Verlag. https://doi.org/10.1007/978-0-85729-916-1 es_ES
dc.description.references Camacho, E. F., Bordons, C., 2004. Model Predictive Control, 2nd Edition. Springer Verlag. es_ES
dc.description.references Camacho, E. F., Gallego, A. J., 2013. Optimal operation in solar trough plants: a case study. Solar Energy 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029 es_ES
dc.description.references Camacho, E. F., Gallego, A. J., 2015. Model predictive control in solar trough plants: A review. In: 5th IFAC Conference on Nonlinear MPC, September 17-20. Sevilla (Spain). es_ES
dc.description.references Camacho, E. F., Rubio, F. R., Berenguel, M., 1997. Advanced control of solar plants. Springer-Verlag. https://doi.org/10.1007/978-1-4471-0981-5 es_ES
dc.description.references Camacho, E. F., Rubio, F. R., Berenguel, M., Valenzuela, L., 2007. A survey on control schemes for distributed solar collector fields. part II: Advanced control approaches. Solar Energy 81, 1252-1272. https://doi.org/10.1016/j.solener.2007.01.001 es_ES
dc.description.references Camacho, E. F., Sanchez, A. J., Gallego, A. J., 2019. Solar Energy Systems: Progress and future directions. Nova Publishers, Ch. Model Predictive Control of Large Scale Solar Trough Plants, pp. 1-59. es_ES
dc.description.references Carmona, R., 1985. Analisis, modelado y control de un campo de colectores solares distribuidos con sistema de seguimiento en un eje. Ph.D. thesis, Universidad de Sevilla. es_ES
dc.description.references Cirre, C. M., Berenguel, M., Valenzuela, L., Klempous., R., 2009. Reference governor optimization and control of a distributed solar collector field. European Journal of Operational Research 193, 709-717. https://doi.org/10.1016/j.ejor.2007.05.056 es_ES
dc.description.references Duffie, J., Beckman, J., 1991. Solar engineering of thermal processes, 2nd Edition. Wiley-Interscience. es_ES
dc.description.references European Comission, 2015. Communication of the Commission to the European Parlament and the Council concerning the Paris Protocol- A blueprint for tackling global climate change beyond 2020. https://ec.europa.eu/commission/publications/paris-protocol-blueprinttackling-global-climate-change-beyond-2020 en, (accessed May 1, 2019). es_ES
dc.description.references Flueckiger, S., b, Z. Y., Garimella, S. V., 2011. An integrated thermal and mechanical investigation of molten-salt thermocline energy storage. Applied Energy 88, 2098-2105. https://doi.org/10.1016/j.apenergy.2010.12.031 es_ES
dc.description.references Frejo, J. R., Camacho, E. F., 2020. Centralized and distributed model predictive control for the maximizationof the thermal power of solar parabolic-trough plants. Solar Energy 204, 190-199. https://doi.org/10.1016/j.solener.2020.04.033 es_ES
dc.description.references Gallego, A. J., Camacho, E. F., 2012a. Adaptative state-space model predictive control of a parabolic-trough field. Control Engineering Practice 20 (9), 904-911. https://doi.org/10.1016/j.conengprac.2012.05.010 es_ES
dc.description.references Gallego, A. J., Camacho, E. F., 2012b. Estimation of effective solar radiation in a parabolic trough field. Solar Energy 86, 3512-3518. https://doi.org/10.1016/j.solener.2011.11.012 es_ES
dc.description.references Gallego, A. J., Fele, F., Camacho, E. F., Yebra, L. J., 2013. Observer-based model predictive control of a solar trough plant. Solar Energy 97, 426-435. https://doi.org/10.1016/j.solener.2013.09.002 es_ES
dc.description.references Gallego, A. J., Macias, M., de Castilla, F., Camacho, E. F., 2019a. Mathematical modeling of the mojave solar plants. Energies 12 (21), 4197. https://doi.org/10.3390/en12214197 es_ES
dc.description.references Gallego, A. J., Merello, G. M., Berenguel., M., F. Camacho, E., 2019b. Gainscheduling model predictive control of a fresnel collector field. Control Engineering Practice 82, 1-13. https://doi.org/10.1016/j.conengprac.2018.09.022 es_ES
dc.description.references Gil, P., Henriques, J., Cardoso, A., Carvalho, P., Dourado, A., 2014. Affine neural network-based predictive control applied to a distributed solar collector field. IEEE Transactions on Control Systemas Technology 22(2), 585-596. https://doi.org/10.1109/TCST.2013.2260545 es_ES
dc.description.references Goswami, D. Y., Kreith, F., Kreider, J. F., 2000. Principles of Solar Engineering, 2nd Edition. Taylor&Francis. es_ES
dc.description.references G.Pin, M.Falchetta, G.Fenu, 2008. Adaptative time-warped control of molten salt distributed collector solar fields. Control Engineering and Practice 16, 813-823. https://doi.org/10.1016/j.conengprac.2007.08.008 es_ES
dc.description.references He, G., Chen, Q., Kang, C., Xia, Q., Jul. 2016. Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets. IEEE Transactions on Sustainable Energy 7 (3), 1245-1254. https://doi.org/10.1109/TSTE.2016.2533637 es_ES
dc.description.references Heeckt, C., Kolaric, S., 2020. Urban sustainability in europe: What is driving cities' environmental changes? Tech. rep., European Environment Agency. URL: https://www.eea.europa.eu/publications/ urban-sustainability-in-europe-what es_ES
dc.description.references Islam, M. T., Huda, N., Abdullah, A. B., Saidur, R., 2018. A comprehensive review of state of the art concentrating solar power (csp) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews 91,987-1018. https://doi.org/10.1016/j.rser.2018.04.097 es_ES
dc.description.references L.Brus, T.Wigren, D.Zambrano, 2010. Feedforward model predictive control of a non-linear solar collector plant with varying delays. IET Journal of Control Theory and Applications 4 (8), 1421-1435. https://doi.org/10.1049/iet-cta.2009.0315 es_ES
dc.description.references Lemos, J. M., Neves-Silva, R., Igreja, J. M., 2014. Adaptive Control of Solar Energy Collector Systems. Springer-Verlag. https://doi.org/10.1007/978-3-319-06853-4 es_ES
dc.description.references Lima, D. M., Normey, J. L., Santos, T. L. M., 2016. Temperature control in a solar collector field using filtered dynamic matrix control. ISA Transactions 62, 39-49. https://doi.org/10.1016/j.isatra.2015.09.016 es_ES
dc.description.references Limon, D., Alvarado, I., Alamo, T., Camacho, E., 2010. Robust tube-based mpc for tracking of constrained linear systems with additive disturbances. Journal of Process Control 20, 248-260. https://doi.org/10.1016/j.jprocont.2009.11.007 es_ES
dc.description.references Liu, Q., Bai, Z., Sun, J., Yan, Y., Gao, Z., Jin, H., 2016. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids. Applied Thermal Engineering 93, 967-977. https://doi.org/10.1016/j.applthermaleng.2015.10.071 es_ES
dc.description.references Meaburn, A., Hughes, F., 1997. Feedforward control of solar thermal power plants. Journal of Solar Energy Engineering 119, 52-60. https://doi.org/10.1115/1.2871838 es_ES
dc.description.references N.A Engineering, 2008. National Academy of Engineering. Grand challenges for engineering. www.engineeringchallenges.org, (accessed May 1, 2019). URL: www.engineeringchallenges.org es_ES
dc.description.references National Renewable Energy Laboratory (NREL), 2021a. Concentrating Solar Power Projects. Mojave Solar Project. (accessed May 1, 2019). URL: https://solarpaces.nrel.gov/project/mojave-solar-project es_ES
dc.description.references National Renewable Energy Laboratory (NREL), 2021b. Concentrating Solar Power Projects. Solana Generating Station. (accessed May 1, 2019). URL: https://solarpaces.nrel.gov/project/solana-generating-station es_ES
dc.description.references NREL Helios, Mar. 2020. Concentrated Solar Power Projects. Helios I. URL: https://solarpaces.nrel.gov/helios-i es_ES
dc.description.references Pin, G., Falchetta, M., Fenu, G., 2009. Modeling and control of concentrating solar power systems: a discrete-time adaptative scheme for temperature control in molten-salt solar collector-fields. In Solar Collectors: Energy Conservation, Design and Applications Series: Renewable Energy: Research, Development and Policies. Nova Publishers, 15-39. es_ES
dc.description.references Rawlings, J., Mayne, D., 2009. Model Predictive Control: Theory and Design. Cheryl M. Rawlings. es_ES
dc.description.references Reviriego, A. N., del Olmo, F. H., Alvarez-Barcia, L., 2017. Nonlinear adaptive control of heat transfer fluid temperature in a parabolic trough solar power plant. Energies 10, 1-12. https://doi.org/10.3390/en10081155 es_ES
dc.description.references Rubio, F. R., Camacho, E. F., Berenguel, M., 2006. Control de campos de colectores solares. RIAI Vol 3, No.4, 26-45. es_ES
dc.description.references Ruız, S., Dominguez, J. R., Camacho, E. F., 2021. Model predictive control based on deep learning for solar parabolic trough plants. Renewable Energy 180, 193-202. https://doi.org/10.1016/j.renene.2021.08.058 es_ES
dc.description.references Sanchez, A. J., Gallego, A. J., Esca˜no, J., Camacho, E., 2018a. Temperature homogenization of a solar trough field for performance improvement. Solar Energy 165, 1-9. https://doi.org/10.1016/j.solener.2018.03.001 es_ES
dc.description.references Sanchez, A. J., Gallego, A. J., Esca˜no, J., Camacho, E., 2019a. Adaptive incremental state space mpc for collector defocusing of a parabolic trough plant. Solar Energy 184, 105-114. https://doi.org/10.1016/j.solener.2019.03.094 es_ES
dc.description.references Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., Nov. 2018b. Event-based mpc for defocusing and power production of a parabolic trough plant under power limitation. Solar Energy 174, 570 - 581. https://doi.org/10.1016/j.solener.2018.09.044 es_ES
dc.description.references Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., 2019b. Thermal balance of large scale parabolic trough plants: A case study. Solar Energy 190, 69 - 81. https://doi.org/10.1016/j.solener.2019.08.001 es_ES
dc.description.references Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., 2020. Parabolic trough collector defocusing analysis: Two control stages vs four control stages. Solar Energy 209, 30-41. https://doi.org/10.1016/j.solener.2020.09.001 es_ES
dc.description.references Shahzad, U., 2015. The need for renewable energy sources. ITEE Journal, 16-18. URL: https://www.researchgate.net/publication/316691176_The_Need_For_Renewable_Energy_Sources https://doi.org/10.1016/S1755-0084(15)30043-0 es_ES
dc.description.references Silva, R., Lemos, J., Rato, L., 2003. Variable sampling adaptive control of a distributed collector solar field. IEEE Control Systems Technology 11, 765- 772. https://doi.org/10.1109/TCST.2003.816407 es_ES
dc.description.references SolarPaces, 2017. Csp project development. URL: https://www.solarpaces.org/csp-technologies/csp-potential-solar-thermal-energy-by-member-nation/usa/ es_ES
dc.description.references Stuetzle, T., Blair, N., Mitchell, J., Beckman, A., 2004. Automatic control of a 30mwe segs vi parabolic trough plant. Solar Energy 76, 187-193. https://doi.org/10.1016/j.solener.2003.01.002 es_ES
dc.description.references Torrico, B., L.Roca, Normey-Rico, J., Guzman, J., L.Yebra, November 2010. Robust nonlinear predictive control applied to a solar collector field in a solar desalination plant. IEEE Transactions on Control Systems Technology18 (6), 1430-1439. https://doi.org/10.1109/TCST.2009.2039137 es_ES
dc.description.references Yang, Z., Suresh, Garimella, V., 2010. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Solar Energy 84, 974-985. https://doi.org/10.1016/j.solener.2010.03.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem