- -

A Urysohn lemma for regular spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Urysohn lemma for regular spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gupta, Ankit es_ES
dc.contributor.author Sarma, Ratna Dev es_ES
dc.date.accessioned 2022-10-06T07:01:24Z
dc.date.available 2022-10-06T07:01:24Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187115
dc.description.abstract [EN] Using the concept of m-open sets, M-regularity and M-normality are introduced and investigated. Both these notions are closed under arbitrary product. M-normal spaces are found to satisfy a result similar to Urysohn lemma. It is shown that closed sets can be separated by m-continuous functions in a regular space. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Regularity es_ES
dc.subject Normality es_ES
dc.subject M-normality es_ES
dc.subject M-regularity es_ES
dc.subject Urysohn lemma es_ES
dc.title A Urysohn lemma for regular spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.16720
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gupta, A.; Sarma, RD. (2022). A Urysohn lemma for regular spaces. Applied General Topology. 23(2):243-253. https://doi.org/10.4995/agt.2022.16720 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.16720 es_ES
dc.description.upvformatpinicio 243 es_ES
dc.description.upvformatpfin 253 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16720 es_ES
dc.description.references A. Blass, Injectivity, projectivity and the axiom of choice, Trans. Am. Math. Soc. 255 (1970), 31-59. https://doi.org/10.1090/S0002-9947-1979-0542870-6 es_ES
dc.description.references C. Boonpok, ξμ-sets in generalized topological spaces, Acta Math. Hungar. 96 (2012), 269-285. https://doi.org/10.1007/s10474-011-0106-2 es_ES
dc.description.references J. Dugundji, Topology, Allyn and Bacon (1966). es_ES
dc.description.references E. Fabrizi and A. Saffiotti, Behavioral Navigation on Topology-based Maps, in: Proc. of the 8th Symp. on robotics with applications, Maui, Hawaii, 2000. es_ES
dc.description.references C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63, no. 1 (1995), 79-90. https://doi.org/10.1016/0166-8641(95)90010-1 es_ES
dc.description.references A. Gupta and R. D. Sarma, on $m$-open sets in topology, in: Conference Proceedings "3rd international conference on Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Energy Technology for Sustainable Development", 7-11. es_ES
dc.description.references I. M. James, Topologies and Uniformities, Springer-Verlag (1987). es_ES
dc.description.references J. L. Kelley, General Topology, D. Van Nostrand, Princeton, N. J., (1955). es_ES
dc.description.references V. Kovalesky and R. Kopperman, Some topology-based image processing algorithms, Ann. Ny. Acad. Sci. 728 (1994), 174-182. https://doi.org/10.1111/j.1749-6632.1994.tb44143.x es_ES
dc.description.references B. M. R. Stadler and P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comp. Sci. 42 (2002), 577-585. https://doi.org/10.1021/ci0100898 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem