Mostrar el registro sencillo del ítem
dc.contributor.author | Gupta, Ankit | es_ES |
dc.contributor.author | Sarma, Ratna Dev | es_ES |
dc.date.accessioned | 2022-10-06T07:01:24Z | |
dc.date.available | 2022-10-06T07:01:24Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187115 | |
dc.description.abstract | [EN] Using the concept of m-open sets, M-regularity and M-normality are introduced and investigated. Both these notions are closed under arbitrary product. M-normal spaces are found to satisfy a result similar to Urysohn lemma. It is shown that closed sets can be separated by m-continuous functions in a regular space. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Regularity | es_ES |
dc.subject | Normality | es_ES |
dc.subject | M-normality | es_ES |
dc.subject | M-regularity | es_ES |
dc.subject | Urysohn lemma | es_ES |
dc.title | A Urysohn lemma for regular spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.16720 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Gupta, A.; Sarma, RD. (2022). A Urysohn lemma for regular spaces. Applied General Topology. 23(2):243-253. https://doi.org/10.4995/agt.2022.16720 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.16720 | es_ES |
dc.description.upvformatpinicio | 243 | es_ES |
dc.description.upvformatpfin | 253 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\16720 | es_ES |
dc.description.references | A. Blass, Injectivity, projectivity and the axiom of choice, Trans. Am. Math. Soc. 255 (1970), 31-59. https://doi.org/10.1090/S0002-9947-1979-0542870-6 | es_ES |
dc.description.references | C. Boonpok, ξμ-sets in generalized topological spaces, Acta Math. Hungar. 96 (2012), 269-285. https://doi.org/10.1007/s10474-011-0106-2 | es_ES |
dc.description.references | J. Dugundji, Topology, Allyn and Bacon (1966). | es_ES |
dc.description.references | E. Fabrizi and A. Saffiotti, Behavioral Navigation on Topology-based Maps, in: Proc. of the 8th Symp. on robotics with applications, Maui, Hawaii, 2000. | es_ES |
dc.description.references | C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63, no. 1 (1995), 79-90. https://doi.org/10.1016/0166-8641(95)90010-1 | es_ES |
dc.description.references | A. Gupta and R. D. Sarma, on $m$-open sets in topology, in: Conference Proceedings "3rd international conference on Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Energy Technology for Sustainable Development", 7-11. | es_ES |
dc.description.references | I. M. James, Topologies and Uniformities, Springer-Verlag (1987). | es_ES |
dc.description.references | J. L. Kelley, General Topology, D. Van Nostrand, Princeton, N. J., (1955). | es_ES |
dc.description.references | V. Kovalesky and R. Kopperman, Some topology-based image processing algorithms, Ann. Ny. Acad. Sci. 728 (1994), 174-182. https://doi.org/10.1111/j.1749-6632.1994.tb44143.x | es_ES |
dc.description.references | B. M. R. Stadler and P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comp. Sci. 42 (2002), 577-585. https://doi.org/10.1021/ci0100898 | es_ES |