Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez, Luis | es_ES |
dc.contributor.author | Tapia, Héctor Pinedo | es_ES |
dc.contributor.author | Ramirez, Edwar | es_ES |
dc.date.accessioned | 2022-10-06T07:03:05Z | |
dc.date.available | 2022-10-06T07:03:05Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187116 | |
dc.description.abstract | [EN] Let X be a compact Hausdorff space. In this work we translate partial actions of X to partial actions on some hyperspaces determined by X, this gives an endofunctor 2- in the category of partial actions on compact Hausdorff spaces which generates a monad in this category. Moreover, structural relations between partial actions ? on X and partial determined by 2? as well as their corresponding globalizations are established. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Partial action | es_ES |
dc.subject | Globalization | es_ES |
dc.subject | Hyperspace | es_ES |
dc.subject | Monad | es_ES |
dc.title | Partial actions of groups on hyperspaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.15745 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Martínez, L.; Tapia, HP.; Ramirez, E. (2022). Partial actions of groups on hyperspaces. Applied General Topology. 23(2):255-268. https://doi.org/10.4995/agt.2022.15745 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.15745 | es_ES |
dc.description.upvformatpinicio | 255 | es_ES |
dc.description.upvformatpfin | 268 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\15745 | es_ES |
dc.description.references | F. Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0 | es_ES |
dc.description.references | J. Camargo, D. Herrera and S. Macías, Cells and $n$-fold hyperspaces, Colloq. Math. 145, no. 2 (2016), 157-166. https://doi.org/10.1016/j.topol.2015.10.001 | es_ES |
dc.description.references | K. Choi, Birget-Rhodes expansions of topological groups, Advanced Studies in Contemporary Mathematics 23, no. 1 (2013), 203-211. | es_ES |
dc.description.references | M. Dokuchaev, Recent developments around partial actions, S~ao Paulo J. Math. Sci. 13, no. 1 (2019), 195-247. https://doi.org/10.1007/s40863-018-0087-y | es_ES |
dc.description.references | M. Dokuchaev and R. Exel, Partial actions and subshifts, J. Funct. Analysis 272 (2017), 5038-5106. https://doi.org/10.1016/j.jfa.2017.02.020 | es_ES |
dc.description.references | R. Exel, Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal. 122, no. 3 (1994), 361-401. https://doi.org/10.1006/jfan.1994.1073 | es_ES |
dc.description.references | R. Exel, Partial actions of group and actions of inverse semigroups, Proc. Amer. Math. Soc. 126, no. 12 (1998), 3481-3494. https://doi.org/10.1090/S0002-9939-98-04575-4 | es_ES |
dc.description.references | R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical surveys and monographs; volume 224, Providence, Rhode Island: American Mathematical Society, 2017. https://doi.org/10.1090/surv/224 | es_ES |
dc.description.references | R. Exel, T. Giordano, and D. Gonçalves, Enveloping algebras of partial actions as groupoid $C^*$-algebras, J. Operator Theory 65 (2011), 197-210. | es_ES |
dc.description.references | J. Kellendonk and M. V. Lawson, Partial actions of groups, International Journal of Algebra and Computation 14 (2004), 87-114. https://doi.org/10.1142/S0218196704001657 | es_ES |
dc.description.references | L. Martínez, H. Pinedo and A. Villamizar, Partial actions on profinite spaces, preprint. | es_ES |
dc.description.references | S. Nadler and A. Illanes, Hyperspaces: Fundamentals and Recent Advances, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1999. | es_ES |
dc.description.references | H. Pinedo and C. Uzcátegui, Polish globalization of Polish group partial actions, Math. Log. Quart. 63, no. 6 (2017), 481-490. https://doi.org/10.1002/malq.201600018 | es_ES |
dc.description.references | H. Pinedo and C. Uzcátegui, Borel globalization of partial actions of Polish groups, Arch. Mat. Log. 57 (2018), 617-627. https://doi.org/10.1007/s00153-017-0598-8 | es_ES |
dc.description.references | J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340. | es_ES |
dc.description.references | B. Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138, no. 2 (2003), 159-170. https://doi.org/10.1007/s00605-002-0521-0 | es_ES |