- -

Partial actions of groups on hyperspaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Partial actions of groups on hyperspaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez, Luis es_ES
dc.contributor.author Tapia, Héctor Pinedo es_ES
dc.contributor.author Ramirez, Edwar es_ES
dc.date.accessioned 2022-10-06T07:03:05Z
dc.date.available 2022-10-06T07:03:05Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187116
dc.description.abstract [EN] Let X be a compact Hausdorff space. In this work we translate partial actions of X to partial actions on some hyperspaces determined by X, this gives an endofunctor 2- in the category of partial actions on compact Hausdorff spaces which generates a monad in this category. Moreover, structural relations between partial actions ? on X and partial determined by 2? as well as their corresponding globalizations are established. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Partial action es_ES
dc.subject Globalization es_ES
dc.subject Hyperspace es_ES
dc.subject Monad es_ES
dc.title Partial actions of groups on hyperspaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15745
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martínez, L.; Tapia, HP.; Ramirez, E. (2022). Partial actions of groups on hyperspaces. Applied General Topology. 23(2):255-268. https://doi.org/10.4995/agt.2022.15745 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15745 es_ES
dc.description.upvformatpinicio 255 es_ES
dc.description.upvformatpfin 268 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15745 es_ES
dc.description.references F. Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0 es_ES
dc.description.references J. Camargo, D. Herrera and S. Macías, Cells and $n$-fold hyperspaces, Colloq. Math. 145, no. 2 (2016), 157-166. https://doi.org/10.1016/j.topol.2015.10.001 es_ES
dc.description.references K. Choi, Birget-Rhodes expansions of topological groups, Advanced Studies in Contemporary Mathematics 23, no. 1 (2013), 203-211. es_ES
dc.description.references M. Dokuchaev, Recent developments around partial actions, S~ao Paulo J. Math. Sci. 13, no. 1 (2019), 195-247. https://doi.org/10.1007/s40863-018-0087-y es_ES
dc.description.references M. Dokuchaev and R. Exel, Partial actions and subshifts, J. Funct. Analysis 272 (2017), 5038-5106. https://doi.org/10.1016/j.jfa.2017.02.020 es_ES
dc.description.references R. Exel, Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal. 122, no. 3 (1994), 361-401. https://doi.org/10.1006/jfan.1994.1073 es_ES
dc.description.references R. Exel, Partial actions of group and actions of inverse semigroups, Proc. Amer. Math. Soc. 126, no. 12 (1998), 3481-3494. https://doi.org/10.1090/S0002-9939-98-04575-4 es_ES
dc.description.references R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical surveys and monographs; volume 224, Providence, Rhode Island: American Mathematical Society, 2017. https://doi.org/10.1090/surv/224 es_ES
dc.description.references R. Exel, T. Giordano, and D. Gonçalves, Enveloping algebras of partial actions as groupoid $C^*$-algebras, J. Operator Theory 65 (2011), 197-210. es_ES
dc.description.references J. Kellendonk and M. V. Lawson, Partial actions of groups, International Journal of Algebra and Computation 14 (2004), 87-114. https://doi.org/10.1142/S0218196704001657 es_ES
dc.description.references L. Martínez, H. Pinedo and A. Villamizar, Partial actions on profinite spaces, preprint. es_ES
dc.description.references S. Nadler and A. Illanes, Hyperspaces: Fundamentals and Recent Advances, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1999. es_ES
dc.description.references H. Pinedo and C. Uzcátegui, Polish globalization of Polish group partial actions, Math. Log. Quart. 63, no. 6 (2017), 481-490. https://doi.org/10.1002/malq.201600018 es_ES
dc.description.references H. Pinedo and C. Uzcátegui, Borel globalization of partial actions of Polish groups, Arch. Mat. Log. 57 (2018), 617-627. https://doi.org/10.1007/s00153-017-0598-8 es_ES
dc.description.references J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340. es_ES
dc.description.references B. Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138, no. 2 (2003), 159-170. https://doi.org/10.1007/s00605-002-0521-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem