Mostrar el registro sencillo del ítem
dc.contributor.author | Panpho, Phakakorn | es_ES |
dc.contributor.author | Yiarayong, Pairote | es_ES |
dc.date.accessioned | 2022-10-06T09:36:25Z | |
dc.date.available | 2022-10-06T09:36:25Z | |
dc.date.issued | 2022-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/187135 | |
dc.description.abstract | [EN] Let R be a commutative ring with identity and M a unitary R-module. The fuzzy classical primary spectrum F cp.spec(M) is the collection of all fuzzy classical primary submodules A of M, the recent generalization of fuzzy primary ideals and fuzzy classical prime submodules. In this paper, we topologize FM(M) with a topology having the fuzzy primary Zariski topology on the fuzzy classical primary spectrum F cp.spec(M) as a subspace topology, and investigate the properties of this topological space. | es_ES |
dc.description.sponsorship | This work (Grant No. RGNS 64-189) was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Zariski topology | es_ES |
dc.subject | Classical primary submodule | es_ES |
dc.subject | Fuzzy classical primary submodule | es_ES |
dc.subject | Fuzzy classical primary spectrum | es_ES |
dc.subject | Fuzzy primary ideal | es_ES |
dc.title | Zariski topology on the spectrum of fuzzy classical primary submodules | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2022.17427 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MHESRI//RGNS 64-189 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Panpho, P.; Yiarayong, P. (2022). Zariski topology on the spectrum of fuzzy classical primary submodules. Applied General Topology. 23(2):333-343. https://doi.org/10.4995/agt.2022.17427 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2022.17427 | es_ES |
dc.description.upvformatpinicio | 333 | es_ES |
dc.description.upvformatpfin | 343 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\17427 | es_ES |
dc.contributor.funder | Ministry of Higher Education, Science, Research and Innovation, Tailandia | es_ES |
dc.description.references | J. Abuhlail, A Zariski topology for modules, Communications in Algebra 39 (2011), 4163-4182. https://doi.org/10.1080/00927872.2010.519748 | es_ES |
dc.description.references | M. Alkan and Y. Tiras, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), 601-611. https://doi.org/10.1007/s10587-006-0041-5 | es_ES |
dc.description.references | R. Ameri and R. Mahjoob, Spectrum of prime $L$-submodules, Fuzzy Sets Syst. 159 (2008), 1107-1115. https://doi.org/10.1016/j.fss.2007.08.011 | es_ES |
dc.description.references | R. Ameri and R. Mahjoob, Spectrum of prime fuzzy hyperideals, Iranian Journal of Fuzzy Systems 6, no. 4 (2009), 61-72. | es_ES |
dc.description.references | R. Ameri and R. Mahjoob, Some topological properties of spectrum of fuzzy submodules, Iranian Journal of Fuzzy Systems 14, no. 1 (2017), 77-87. | es_ES |
dc.description.references | R. Ameri, R. Mahjoob and M. Mootamani, The Zariski topology on the spectrum of prime L-submodules, Soft Comput. 12 (2008), 901-908. https://doi.org/10.1007/s00500-007-0259-7 | es_ES |
dc.description.references | A. Azizi, Prime submodules and flat modules, Acta Math. Sin. (Eng. Ser.) 23 (2007), 47-152. https://doi.org/10.1007/s10114-005-0813-0 | es_ES |
dc.description.references | J. Castro, J. Rios and G. Tapia, Some aspects of Zariski topology for multiplication modules and their attached frames and quantales, J. Korean Math. Soc. 56, no. 5 (2019), 1285-1307. | es_ES |
dc.description.references | J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156 | es_ES |
dc.description.references | A. Y. Darani and S. Motmaen, Zariski topology on the spectrum of graded classical prime submodules, Appl. Gen. Topol. 14, no. 2 (2013), 159-169. https://doi.org/10.4995/agt.2013.1586 | es_ES |
dc.description.references | J. Goswami and H. K. Saikia, On the spectrum of weakly prime submodule, Thai Journal of Mathematics 19, no. 1 (2021), 51-58. | es_ES |
dc.description.references | W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst. 8 (1982), 133-139. https://doi.org/10.1016/0165-0114(82)90003-3 | es_ES |
dc.description.references | C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), 417-432. | es_ES |
dc.description.references | C. V. Negoita and D. A. Ralescu, Application of fuzzy systems analysis, Birkhauser, Basel, 1975. https://doi.org/10.1007/978-3-0348-5921-9 | es_ES |
dc.description.references | H. A. Toroghy and S. S. Pourmortazavi, On the prime spectrum of modules, Miskolc Mathematical Notes 16, no. 2 (2015), 1233-1242. https://doi.org/10.18514/MMN.2015.1102 | es_ES |
dc.description.references | H. A. Toroghy and R. O. Sarmazdeh, On the prime spectrum of a module and Zariski topologies, Communications in Algebra 38 (2010), 4461-4475. https://doi.org/10.1080/00927870903386510 | es_ES |
dc.description.references | L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X | es_ES |
dc.description.references | K. A. Zoubi and M. Jaradat, The Zariski topology on the graded classical prime spectrum of a graded module over a graded commutative ring, Matematicki Vesnik 70, no. 4 (2018), 303-313. | es_ES |