- -

Zariski topology on the spectrum of fuzzy classical primary submodules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zariski topology on the spectrum of fuzzy classical primary submodules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Panpho, Phakakorn es_ES
dc.contributor.author Yiarayong, Pairote es_ES
dc.date.accessioned 2022-10-06T09:36:25Z
dc.date.available 2022-10-06T09:36:25Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187135
dc.description.abstract [EN] Let R be a commutative ring with identity and M a unitary R-module. The fuzzy classical primary spectrum F cp.spec(M) is the collection of all fuzzy classical primary submodules A of M, the recent generalization of fuzzy primary ideals and fuzzy classical prime submodules. In this paper, we topologize FM(M) with a topology having the fuzzy primary Zariski topology on the fuzzy classical primary spectrum F cp.spec(M) as a subspace topology, and investigate the properties of this topological space. es_ES
dc.description.sponsorship This work (Grant No. RGNS 64-189) was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Zariski topology es_ES
dc.subject Classical primary submodule es_ES
dc.subject Fuzzy classical primary submodule es_ES
dc.subject Fuzzy classical primary spectrum es_ES
dc.subject Fuzzy primary ideal es_ES
dc.title Zariski topology on the spectrum of fuzzy classical primary submodules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.17427
dc.relation.projectID info:eu-repo/grantAgreement/MHESRI//RGNS 64-189 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Panpho, P.; Yiarayong, P. (2022). Zariski topology on the spectrum of fuzzy classical primary submodules. Applied General Topology. 23(2):333-343. https://doi.org/10.4995/agt.2022.17427 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.17427 es_ES
dc.description.upvformatpinicio 333 es_ES
dc.description.upvformatpfin 343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\17427 es_ES
dc.contributor.funder Ministry of Higher Education, Science, Research and Innovation, Tailandia es_ES
dc.description.references J. Abuhlail, A Zariski topology for modules, Communications in Algebra 39 (2011), 4163-4182. https://doi.org/10.1080/00927872.2010.519748 es_ES
dc.description.references M. Alkan and Y. Tiras, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), 601-611. https://doi.org/10.1007/s10587-006-0041-5 es_ES
dc.description.references R. Ameri and R. Mahjoob, Spectrum of prime $L$-submodules, Fuzzy Sets Syst. 159 (2008), 1107-1115. https://doi.org/10.1016/j.fss.2007.08.011 es_ES
dc.description.references R. Ameri and R. Mahjoob, Spectrum of prime fuzzy hyperideals, Iranian Journal of Fuzzy Systems 6, no. 4 (2009), 61-72. es_ES
dc.description.references R. Ameri and R. Mahjoob, Some topological properties of spectrum of fuzzy submodules, Iranian Journal of Fuzzy Systems 14, no. 1 (2017), 77-87. es_ES
dc.description.references R. Ameri, R. Mahjoob and M. Mootamani, The Zariski topology on the spectrum of prime L-submodules, Soft Comput. 12 (2008), 901-908. https://doi.org/10.1007/s00500-007-0259-7 es_ES
dc.description.references A. Azizi, Prime submodules and flat modules, Acta Math. Sin. (Eng. Ser.) 23 (2007), 47-152. https://doi.org/10.1007/s10114-005-0813-0 es_ES
dc.description.references J. Castro, J. Rios and G. Tapia, Some aspects of Zariski topology for multiplication modules and their attached frames and quantales, J. Korean Math. Soc. 56, no. 5 (2019), 1285-1307. es_ES
dc.description.references J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156-181. https://doi.org/10.1515/crll.1978.298.156 es_ES
dc.description.references A. Y. Darani and S. Motmaen, Zariski topology on the spectrum of graded classical prime submodules, Appl. Gen. Topol. 14, no. 2 (2013), 159-169. https://doi.org/10.4995/agt.2013.1586 es_ES
dc.description.references J. Goswami and H. K. Saikia, On the spectrum of weakly prime submodule, Thai Journal of Mathematics 19, no. 1 (2021), 51-58. es_ES
dc.description.references W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets Syst. 8 (1982), 133-139. https://doi.org/10.1016/0165-0114(82)90003-3 es_ES
dc.description.references C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), 417-432. es_ES
dc.description.references C. V. Negoita and D. A. Ralescu, Application of fuzzy systems analysis, Birkhauser, Basel, 1975. https://doi.org/10.1007/978-3-0348-5921-9 es_ES
dc.description.references H. A. Toroghy and S. S. Pourmortazavi, On the prime spectrum of modules, Miskolc Mathematical Notes 16, no. 2 (2015), 1233-1242. https://doi.org/10.18514/MMN.2015.1102 es_ES
dc.description.references H. A. Toroghy and R. O. Sarmazdeh, On the prime spectrum of a module and Zariski topologies, Communications in Algebra 38 (2010), 4461-4475. https://doi.org/10.1080/00927870903386510 es_ES
dc.description.references L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X es_ES
dc.description.references K. A. Zoubi and M. Jaradat, The Zariski topology on the graded classical prime spectrum of a graded module over a graded commutative ring, Matematicki Vesnik 70, no. 4 (2018), 303-313. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem