- -

Fixed point results of enriched interpolative Kannan type operators with applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point results of enriched interpolative Kannan type operators with applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Mujahid es_ES
dc.contributor.author Anjum, Rizwan es_ES
dc.contributor.author Riasat, Shakeela es_ES
dc.date.accessioned 2022-10-06T09:49:30Z
dc.date.available 2022-10-06T09:49:30Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187139
dc.description.abstract [EN] The purpose of this paper is to introduce the class of enriched interpolative Kannan type operators on Banach space that contains theclasses of enriched Kannan operators, interpolative Kannan type contraction operators and some other classes of nonlinear operators. Some examples are presented to support the concepts introduced herein. A convergence theorem for the Krasnoselskij iteration method to approximate fixed point of the enriched interpolative Kannan type operators is proved. We study well-posedness, Ulam-Hyers stability and periodic point property of operators introduced herein. As an application of the main result, variational inequality problems is solved. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Enriched Kannan operators es_ES
dc.subject Interpolative Kannan type contraction es_ES
dc.subject Krasnoselskij iteration es_ES
dc.subject Well-posedness es_ES
dc.subject Periodic point es_ES
dc.subject Ulam-Hyers stability es_ES
dc.subject Variational inequality problem es_ES
dc.title Fixed point results of enriched interpolative Kannan type operators with applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.16701
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Abbas, M.; Anjum, R.; Riasat, S. (2022). Fixed point results of enriched interpolative Kannan type operators with applications. Applied General Topology. 23(2):391-404. https://doi.org/10.4995/agt.2022.16701 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.16701 es_ES
dc.description.upvformatpinicio 391 es_ES
dc.description.upvformatpfin 404 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\16701 es_ES
dc.description.references R. Anjum and M. Abbas, Fixed point property of a nonempty set relative to the class offriendly mappings, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 116,no. 1 (2022), Paper no. 32. https://doi.org/10.1007/s13398-021-01158-5 es_ES
dc.description.references R. Anjum and M. Abbas, Common fixed point theorem for modified Kannan enrichedcontraction pair in Banach spaces and its applications, Filomat 35, no. 8 (2021) 2485-2495. https://doi.org/10.2298/FIL2108485A es_ES
dc.description.references M. Abbas, R. Anjum and V. Berinde, Enriched multivalued contractions with applica-tions to differential inclusions and dynamic programming, Symmetry 13, no. 8 (2021),Paper no. 1350. https://doi.org/10.3390/sym13081350 es_ES
dc.description.references M. Abbas, R. Anjum and V. Berinde, Equivalence of certain iteration processes obtainedby two new classes of operators, Mathematics 9, no. 18 (2021), Paper no. 2292. https://doi.org/10.3390/math9182292 es_ES
dc.description.references M. Abbas, R. Anjum and H. Iqbal, Generalized enriched cyclic contractions with appli-cation to generalized iterated function system, Chaos, Solitons and Fractals 154 (2022),Paper no. 111591. https://doi.org/10.1016/j.chaos.2021.111591 es_ES
dc.description.references R. P. Agarwal and E. Karapinar, Interpolative Rus-Reich- Ciric type contractions viasimulation functions, An. St. Univ. Ovidius Constanta, Ser. Mat. 27, no. 3 (2019), 137-152. https://doi.org/10.2478/auom-2019-0038 es_ES
dc.description.references R. P. Agarwal, E. Karapinar, D. O'Regan and A. F. Roldan Lopez de Hierro, Fixedpoint theory in metric type spaces, Springer International Publishing, 2015. es_ES
dc.description.references H. Aydi, E. Karapinar and A. F. Roldan Lopez de Hierro, w-Interpolative Ciric-Reich-Rus-type contractions, Mathematics 7, no. 57 (2019), Paper no. 57. https://doi.org/10.3390/math7010057 es_ES
dc.description.references H. Aydi, C. M. Chen and E. Karapinar, Interpolative Ciric-Reich-Rustypes via the Branciari distance, Mathematics 7, no. 1 (2019), Paper no. 84. https://doi.org/10.3390/math7010084 es_ES
dc.description.references F. S. D. Blasi and J. Myjak, Sur la porosité de l'ensemble des contractions sans point fixe, C. R. Acad. Sci. Paris. 308 (1989), 51-54. es_ES
dc.description.references V. Berinde and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed Point Theory and Applications 22, no. 2 (2020), 1-10. https://doi.org/10.1007/s11784-020-0769-9 es_ES
dc.description.references V. Berinde and M. Păcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, Journal of Computational and Applied Mathematics 386 (2021), Paper no. 113217. https://doi.org/10.1016/j.cam.2020.113217 es_ES
dc.description.references V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskii iteration in Hilbert spaces, Carpathian J. Math. 35, no. 3 (2019), 293-304. https://doi.org/10.37193/CJM.2019.03.04 es_ES
dc.description.references V. Berinde and M. Păcurar, Approximating fixed points of enriched Chatterjea contractions by Krasnoselskii iterative algorithm in Banach spaces, Journal of Fixed Point Theory and Applications 23, no. 4 (2021), 1-16. https://doi.org/10.1007/s11784-021-00904-x es_ES
dc.description.references V. Berinde and M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math. 37 (2021), 173-184. https://doi.org/10.37193/CJM.2021.02.03 es_ES
dc.description.references F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Am. Math. Soc. 72 (1966), 571-575. https://doi.org/10.1090/S0002-9904-1966-11544-6 es_ES
dc.description.references C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20, no. 1 (2004), 103-120. https://doi.org/10.1088/0266-5611/20/1/006 es_ES
dc.description.references E. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), 974-979. https://doi.org/10.1090/S0002-9939-1959-0110093-3 es_ES
dc.description.references I. C. Chifu and E. Karapinar, Admissible hybrid Z-contractions in b-metric spaces, Axioms. 9, no. 1, (2020), Paper no. 2. https://doi.org/10.3390/axioms9010002 es_ES
dc.description.references P. Debnath and M. de La Sen, Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in b-metric spaces, Mathematics. 7, no. 9 (2019), Paper no. 849. https://doi.org/10.3390/math7090849 es_ES
dc.description.references Y. U. Gaba and E. Karapinar, A new approach to the interpolative contractions, Axioms 8, no. 4 (2019), Paper no. 110. https://doi.org/10.3390/axioms8040110 es_ES
dc.description.references Y. U. Gaba, H. Aydi and N. Mlaik, (ρ,η,μ)-interpolative Kannan contractions I, Axioms. 10, no. 3 (2021), Paper no. 212. https://doi.org/10.3390/axioms10030212 es_ES
dc.description.references G. S. Jeong and B. E. Rhoades, Maps for which $F(T)=F(T^{n}),$ Fixed Point Thoery Appl. 6 (2005), 87-131. es_ES
dc.description.references J. Górnicki and R. K. Bisht, Around averaged mappings, Journal of Fixed Point Theory and Applications 23 (2021), Paper no. 48. https://doi.org/10.1007/s11784-021-00884-y es_ES
dc.description.references R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437 es_ES
dc.description.references R. Kannan, Some results o fixed points, II, Amer. Math. Monthly 76 (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228 es_ES
dc.description.references M. Kikkawa and T. Suzuki, Some similarity between contractions and Kannan mappings II, Bull. Kyushu Inst. Technol. Pure Appl. Math. 55 (2008) 1-13. https://doi.org/10.1155/2008/649749 es_ES
dc.description.references E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135 es_ES
dc.description.references E. Karapinar, O. Alqahtani and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry. 11, no. 1 (2019), Paper no. 8. https://doi.org/10.3390/sym11010008 es_ES
dc.description.references E. Karapinar, R. Agarwal and H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), Paper no. 256. https://doi.org/10.3390/math6110256 es_ES
dc.description.references E. Karapinar and A. Fulga, New hybrid contractions on b-metric spaces, Mathematics 7, no. 7 (2019), Paper no. 578. https://doi.org/10.3390/math7070578 es_ES
dc.description.references E. Karapinar, H. Aydi and Z. D. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math. 11, no. 2 (2020), 204-212. es_ES
dc.description.references E. Karapinar, A. Fulga and A. F. Roldán López de Hierro, Fixed point theory in the setting of (α,β,ψ,ϕ)-interpolative contractions, Advances in Difference Equations 1, (2021), 1-16. https://doi.org/10.1186/s13662-021-03491-w es_ES
dc.description.references E. Karapinar, Interpolative Kannan-Meir-Keeler type contractions, Advances in the Theory of Nonlinear Analysis and its Applications 5, no. 4 (2021), 611-614. https://doi.org/10.31197/atnaa.989389 es_ES
dc.description.references M. S. Khan, Y. M. Singh and E. Karapinar, On the interpolative (ϕ,ψ)-type Z-contractions, U. P. B. Sci. Bull. Series A. 83, no. 2 (2021), 25-38. es_ES
dc.description.references E. Karapinar, A. Fulga and S. S. Yesilkaya, New Results on Perov-interpolative contractions of Suzuki type mappings, Journal of Functional Spaces 2021, Art. ID 9587604. https://doi.org/10.1155/2021/9587604 es_ES
dc.description.references M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk. 10 (1955), 123-127. es_ES
dc.description.references M. Noorwali, Common fixed point for Kannan type via interpolation, J. Math. Anal. 9, no. 6 (2018), 92-94. es_ES
dc.description.references S. Reich and A. J. Zaslavski, Well-posedness of fixed point problems, Far East Journal of Mathematical Sciences (FJMS) 2001, Special volume, Part III, 393-401. es_ES
dc.description.references I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001. es_ES
dc.description.references P. V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci. 8 (1974), 445-457. es_ES
dc.description.references W. Sintunavarat, Generalized Ulam-Hyres stability, well-posedness and limit shadowing of fixed point problems for α-β-contraction mapping in metric spaces, The Sci. World J. 2014, Article ID 569174. https://doi.org/10.1155/2014/569174 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem