S. K. Barve, Q. A. Kabir and R. D. Daheriya, Unique common fixed point theorem for weakly compatible mappings in digital metric space, International Journal of Scientific Research and Reviews 8, no. 1 (2019), 2114-2121.
L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667
[+]
S. K. Barve, Q. A. Kabir and R. D. Daheriya, Unique common fixed point theorem for weakly compatible mappings in digital metric space, International Journal of Scientific Research and Reviews 8, no. 1 (2019), 2114-2121.
L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667
L. Boxer, Remarks on fixed point assertions in digital topology, 3, Applied General Topology 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117
L. Boxer, Remarks on fixed point assertions in digital topology, 4, Applied General Topology 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075
L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474
C. Chauhan, J. Singhal, S. Shrivastava, Q. A. Kabir and P. K. Jha, Digital topology with fixed point, Materials Today: Proceedings 47 (2021), 7167-7169. https://doi.org/10.1016/j.matpr.2021.06.358
S. Dalal, Common fixed point results for weakly compatible map in digital metric spaces, Scholars Journal of Physics, Mathematics and Statistics 4, no. 4 (2017), 196-201.
O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
K. Jyoti and A. Rani, Fixed point theorems for β-ψ-ϕ-expansive type mappings in digital metric spaces, Asian Journal of Mathematics and Computer Research 24, no. 2 (2018), 56-66.
K. Jyoti and A. Rani, Fixed point theorems with digital contractions, International Journal of Current Advanced Research 7, no. 3(E) (2018), 10768-10772.
A. Mishra, P. K. Tripathi, A. K. Agrawal and D. R. Joshi, A contraction mapping method in digital image processing, International Journal of Recent Technology and Engineering 8, no. 4S5 (2019), 193-196. https://doi.org/10.35940/ijrte.D1046.1284S519
L. N. Mishra, K. Jyoti, A. Rani and Vandana, Fixed point theorems with digital contractions image processing, Nonlinear Science Letters A 9, no. 2 (2018), 104-115.
K. Rana and A. Garg, Various contraction conditions in digital metric spaces, Advances in Mathematics: Scientific Journal 9, no. 8 (2020), 5433-5441. https://doi.org/10.37418/amsj.9.8.14
A. Rosenfeld, "Continuous" functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
[-]