- -

Classical solutions for the Euler equations of compressible fluid dynamics: A new topological approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classical solutions for the Euler equations of compressible fluid dynamics: A new topological approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boureni, Dalila es_ES
dc.contributor.author Georgiev, Svetlin es_ES
dc.contributor.author Kheloufi, Arezki es_ES
dc.contributor.author Mebarki, Karima es_ES
dc.date.accessioned 2022-10-06T10:03:58Z
dc.date.available 2022-10-06T10:03:58Z
dc.date.issued 2022-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/187146
dc.description.abstract [EN] In this article we study a class of Euler equations of compressible fluid dynamics. We give conditions under which the considered equations have at least one and at least two classical solutions. To prove our main results we propose a new approach  based upon  recent  theoretical results. es_ES
dc.description.sponsorship "Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) , MESRS, Algeria es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Euler equations es_ES
dc.subject Classical solution es_ES
dc.subject Fixed point es_ES
dc.subject Initial value problem es_ES
dc.title Classical solutions for the Euler equations of compressible fluid dynamics: A new topological approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2022.15963
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boureni, D.; Georgiev, S.; Kheloufi, A.; Mebarki, K. (2022). Classical solutions for the Euler equations of compressible fluid dynamics: A new topological approach. Applied General Topology. 23(2):463-480. https://doi.org/10.4995/agt.2022.15963 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2022.15963 es_ES
dc.description.upvformatpinicio 463 es_ES
dc.description.upvformatpfin 480 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\15963 es_ES
dc.contributor.funder Direction Générale de la Recherche Scientifique et du Développement Technologique, Argelia es_ES
dc.description.references S. Benslimane, S. Georgiev and K. Mebarki, Multiple nonnegative solutions for a class of fourth-order BVPs via a new topological approach, Advances in the Theory of Nonlinear Analysis and its Applications 6, no. 3 (2022), 390-404. https://doi.org/10.31197/atnaa.977625 es_ES
dc.description.references D. Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces, Commun. Pure Appl. Math. 55 (2002), 654-78. https://doi.org/10.1002/cpa.10029 es_ES
dc.description.references D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptot. Anal. 38 (2004), 339-358. es_ES
dc.description.references G. Q. Chen and J. G. Liu, Convergence of second-order schemes for isentropic gas dynamics, Mathematics of computation 61, no. 204 (1993), 607-627. https://doi.org/10.1090/S0025-5718-1993-1185239-7 es_ES
dc.description.references K. L. Cheung and S. Wong, The lifespan of classical solutions to the (damped) compressible Euler equations, Bull. Malays. Math. Sci. Soc. 44 (2021), 1867-1879. https://doi.org/10.1007/s40840-020-01036-0 es_ES
dc.description.references D. Christodoulou, The Euler equations of compressible fluid flow, Bulletin of the American Mathematical Society 44, no. 4 (2007), 581-602. https://doi.org/10.1090/S0273-0979-07-01181-0 es_ES
dc.description.references R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91 (1983), 1-30. https://doi.org/10.1007/BF01206047 es_ES
dc.description.references S. Djebali and K. Mebarki, Fixed point index theory for perturbation of expansive mappings by k-set contractions, Top. Meth. Nonli. Anal. 54, no. 2A (2019), 613-640. https://doi.org/10.12775/TMNA.2019.055 es_ES
dc.description.references P. Drabek and J. Milota, Methods in Nonlinear Analysis, Applications to Differential Equations, Birkhäuser, 2007. es_ES
dc.description.references D. G. Ebin, Motion of a slightly compressible fluid, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 539-542. https://doi.org/10.1073/pnas.72.2.539 es_ES
dc.description.references S. Georgiev and P. LeFloch, Generalized time-periodic solutions to the Euler equations of compressible fluids, Differ. Equ. Appl. 1, no. 3 (2009), 413-426. https://doi.org/10.7153/dea-01-23 es_ES
dc.description.references J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. https://doi.org/10.1002/cpa.3160180408 es_ES
dc.description.references Y. Goncharov, On existence and uniqueness of classical solutions to Euler equations in a rotating cylinder, Eur. J. Mech. B Fluids 25 (2006), 267-278. https://doi.org/10.1016/j.euromechflu.2006.02.001 es_ES
dc.description.references D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, Mass, USA, vol. 5, (1988). es_ES
dc.description.references H. Jia and R. Wan, Long time existence of classical solutions for the rotating Euler equations and related models in the optimal Sobolev space, Nonlinearity 33 (2020), 3763-3780. https://doi.org/10.1088/1361-6544/ab86cf es_ES
dc.description.references E. I. Kapstov and S. V. Meleshko, Conservation laws of the one-dimensional isentropic gas dynamics equations in Lagrangian coordinates, AIP Conf. Proc. 2153 (2019), 020009. https://doi.org/10.1063/1.5125074 es_ES
dc.description.references T. Kato, Nonstationary flows of viscous and ideal fluids in $R^{3},$ J. Functional Analysis 9 (1972), 296-305. https://doi.org/10.1016/0022-1236(72)90003-1 es_ES
dc.description.references T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907. https://doi.org/10.1002/cpa.3160410704 es_ES
dc.description.references P. L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Phys. 163 (1994), 415-431. https://doi.org/10.1007/BF02102014 es_ES
dc.description.references T. P. Liu and J. A. Smoller, On the vacuum state for isentropic gas dynamics equations, Advances in Applied Mathematics 1 (1980), 345-359. https://doi.org/10.1016/0196-8858(80)90016-0 es_ES
dc.description.references A. Majda, Compressible Fluid Flow and Conservation Laws in Several Space Variables, Springer: Berlin, New York, 1984. https://doi.org/10.1007/978-1-4612-1116-7 es_ES
dc.description.references T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math. 3 (1986), 249-257. https://doi.org/10.1007/BF03167100 es_ES
dc.description.references H. C. Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B^{1}_{infty;1}(R^{n}),$ Comm. Partial Differential Equations 29 (2004), 1149-1166. https://doi.org/10.1081/PDE-200033764 es_ES
dc.description.references X. Pan, Global existence and asymptotic behavior of solutions to the Euler equations with time-dependent damping, Appl. Anal. 100 (2021), 3546-3575. https://doi.org/10.1080/00036811.2020.1722805 es_ES
dc.description.references A. Polyanin and A. Manzhirov, Handbook of Integral Equations, CRC Press, 1998. https://doi.org/10.1201/9781420050066 es_ES
dc.description.references D. Serre, Solutions classiques globales des équations d'Euler pour un fluide parfait compressible, Ann. Inst. Fourier (Grenoble) 47, no. 1 (1997), 139-153. https://doi.org/10.5802/aif.1563 es_ES
dc.description.references T. C. Sideris, B. Thomases and D. Dehua Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations 28, no. 3-4 (2003), 795-816. https://doi.org/10.1081/PDE-120020497 es_ES
dc.description.references R. Takada, Long time existence of classical solutions for the 3D incompressible rotating Euler equations, J. Math. Soc. Japan 68, no. 2 (2016), 579-608. https://doi.org/10.2969/jmsj/06820579 es_ES
dc.description.references T Xiang and R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal. 71, no. 7-8 (2009), 3229-3239. https://doi.org/10.1016/j.na.2009.01.197 es_ES
dc.description.references J. Xu and S. Kawashima, Diffusive relaxation limit of classical solutions to the damped compressible Euler equations, J. Differential Equations 256 (2014), 771-796. https://doi.org/10.1016/j.jde.2013.09.019 es_ES
dc.description.references N. Zabusky, Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics, Chaos 15, no. 1 (2005), 015102. https://doi.org/10.1063/1.1861554 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem