Mostrar el registro sencillo del ítem
dc.contributor.author | Manzano, Antonio | es_ES |
dc.contributor.author | Rueda, Pilar | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2022-10-11T18:04:35Z | |
dc.date.available | 2022-10-11T18:04:35Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 1735-8787 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187510 | |
dc.description.abstract | [EN] In this paper we introduce a function for multilinear operators that can be considered as an extension of the so-called outer measure associated to a linear operator ideal. We prove that it allows to characterize the operators that belong to a closed surjective ideal of multilinear operators as those having measure equal to zero. We also obtain some interpolation formulas for this new measure. As a consequence we deduce interpolation results for arbitrary closed surjective ideals of multilinear operators which recover, in particular, different results previously established in the literature. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for their useful comments which have led to improve the paper. A. Manzano was supported in part by the Ministerio de Economia, Industria y Competitividad and FEDER under project MTM2017-84058-P. P. Rueda and E. A. Sanchez-Perez were supported in part by the Ministerio de Economia, Industria y Competitividad and FEDER under project MTM2016-77054-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Duke University Press | es_ES |
dc.relation.ispartof | Banach Journal of Mathematical Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ideal of multilinear operators | es_ES |
dc.subject | Closed ideal | es_ES |
dc.subject | Surjective ideal | es_ES |
dc.subject | Measure associated to an ideal | es_ES |
dc.subject | Interpolation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Closed surjective ideals of multilinear operators and interpolation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s43037-020-00115-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84058-P/ES/INTERPOLACION, ESPACIOS DE FUNCIONES Y COMPACIDAD DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Manzano, A.; Rueda, P.; Sánchez Pérez, EA. (2021). Closed surjective ideals of multilinear operators and interpolation. Banach Journal of Mathematical Analysis. 15(2):1-22. https://doi.org/10.1007/s43037-020-00115-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s43037-020-00115-5 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\458354 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD | es_ES |
dc.description.references | Astala, K.: On measures of non-compactness and ideal variations in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 29, 1–42 (1980) | es_ES |
dc.description.references | Bényi, Á., Oh, T.: Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators. J. Fourier Anal. Appl. 20, 282–300 (2014) | es_ES |
dc.description.references | Bényi, Á., Torres, R.H.: Compact bilinear operators and commutators. Proc. Am. Math. Soc. 141, 3609–3621 (2013) | es_ES |
dc.description.references | Bergh, J., Löfström, J.: Interpolation spaces (an introduction). Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976) | es_ES |
dc.description.references | Berrios, S., Botelho, G., Rueda, P.: The surjective hull of a polynomial ideal. Math. Nachr. 290, 687–698 (2017) | es_ES |
dc.description.references | Beucher, O.J.: On interpolation of strictly (co-)singular linear operators. Proc. R. Soc. Edinb. 112A, 263–269 (1989) | es_ES |
dc.description.references | Botelho, G., Galindo, P., Pellegrini, L.: Uniform approximation on ideals of multilinear mappings. Math. Scand. 106, 301–319 (2010) | es_ES |
dc.description.references | Botelho, G., Michels, C., Pellegrino, D.: Complex interpolation and summability properties of multilinear operators. Rev. Mat. Complut. 23, 139–161 (2010) | es_ES |
dc.description.references | Botelho, G., Pellegrino, D., Rueda, P.: On composition ideals of multilinear mappings and homogeneous polynomials. Publ. Res. Inst. Math. Sci. 43, 1139–1155 (2007) | es_ES |
dc.description.references | Braunss, H.A., Junek, J.: Factorization of injective ideals by interpolation. J. Math. Anal. Appl. 297, 740–750 (2004) | es_ES |
dc.description.references | Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990) | es_ES |
dc.description.references | Cobos, F., Fernández-Cabrera, L.M., Martínez, A.: On compactness results of Lions-Peetre type for bilinear operators. Nonlinear Anal. 199, 111951 (2020). https://doi.org/10.1016/j.na.2020.111951 | es_ES |
dc.description.references | Cobos, F., Manzano, A., Martínez, A.: Interpolation theory and measures related to operator ideals. Quart. J. Math. 50, 401–416 (1999) | es_ES |
dc.description.references | Cobos, F., Manzano, A., Martínez, A., Matos, P.: On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proc. R. Soc. Edinb. Sect. A Math. 130A, 971–989 (2000) | es_ES |
dc.description.references | Cobos, F., Martínez, A.: Remarks on interpolation properties of the measure of weak non-compactness and ideal variations. Math. Nachr. 208, 93–100 (1999) | es_ES |
dc.description.references | De Blasi, F.S.: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie 21, 259–262 (1977) | es_ES |
dc.description.references | Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993) | es_ES |
dc.description.references | Diestel, J.: A survey of results related to Dunford–Pettis property. Contemp. Math. 2, 15–60 (1980) | es_ES |
dc.description.references | Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summning Operators. Cambridge University Press, Cambridge (1995) | es_ES |
dc.description.references | Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987) | es_ES |
dc.description.references | Fernández, D.L., Mastyło, M., Silva, E.B.: Quasi $$s$$-numbers and measures of non-compactness of multilinear operators. Ann. Acad. Sci. Fenn. 38, 805–823 (2013) | es_ES |
dc.description.references | Fernández-Cabrera, L.M., Martínez, A.: On interpolation properties of compact bilinear operators. Math. Nachr. 290, 1663–1677 (2017) | es_ES |
dc.description.references | Fernández-Cabrera, L.M., Martínez, A.: Real interpolation properties of compact bilinear operators. J. Fourier Anal. Appl. 24, 1181–1203 (2018) | es_ES |
dc.description.references | Geiss, S.: Ein Faktorisierungssatz für multilineare Funktionale. Math. Nachr. 134, 149–159 (1987). (in German) | es_ES |
dc.description.references | Gohberg, I., Gol’dens̆teĭn, L.S., Markus, A.S.: Investigation of some properties of bounded linear operators in connection with their $$q$$-norms. Ucen. Zap. Kishinevsk. Un-ta. 29, 29–36 (1957) (in Russian) | es_ES |
dc.description.references | González, M., Gutiérrez, J.M.: Surjective factorization of holomorphic mappings. Comment. Math. Univ. Carolin. 41, 469–476 (2000) | es_ES |
dc.description.references | Heinrich, S.: Closed operator ideals and interpolation. J. Funct. Anal. 35, 397–411 (1980) | es_ES |
dc.description.references | Hu, G.: Compactness of the commutator of bilinear Fourier multiplier operator. Taiwan. J. Math. 18, 661–675 (2014) | es_ES |
dc.description.references | Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) | es_ES |
dc.description.references | Maligranda, L., Quevedo, A.: Interpolation of weakly compact operators. Arch. Math. 55, 280–284 (1990) | es_ES |
dc.description.references | Manzano, A.: Medidas asociadas a ideales de operadores y teoría de interpolación. Ph. D thesis, Publicaciones del Departamento de Análisis Matemático, Universidad Complutense de Madrid (2000) | es_ES |
dc.description.references | Manzano, A., Rueda, P., Sánchez-Pérez, E.A.: Closed injective ideals of multilinear operators, related measures and interpolation. Math. Nachr. 293, 510–532 (2020) | es_ES |
dc.description.references | Mastyło, M.: On interpolation spaces with the Gelfand–Phillips property. Math. Nachr. 137, 27–34 (1988) | es_ES |
dc.description.references | Mastyło, M., Silva, E.B.: Interpolation of the measure of non-compactness of bilinear operators. Trans. Am. Math. Soc. 370, 8979–8997 (2018) | es_ES |
dc.description.references | Mastyło, M., Silva, E.B.: Interpolation of compact bilinear operators. Bull. Math. Sci. (2020). https://doi.org/10.1142/S1664360720500022 | es_ES |
dc.description.references | Pełczyński, A.: On strictly singular and strictly cosingular operators I y II. Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 13, 31–41 (1965) | es_ES |
dc.description.references | Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980) | es_ES |
dc.description.references | Pietsch, A.: Ideals of multilinear functionals (designs of a theory). In: Proc. Second Int. Conf. on Operator Algebras, Ideals and Their Applications in Theoretical Physics. Teubner-Texte Math., vol. 67, pp. 185–199 (1983) | es_ES |
dc.description.references | Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) | es_ES |