- -

Closed surjective ideals of multilinear operators and interpolation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Closed surjective ideals of multilinear operators and interpolation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manzano, Antonio es_ES
dc.contributor.author Rueda, Pilar es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2022-10-11T18:04:35Z
dc.date.available 2022-10-11T18:04:35Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 1735-8787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187510
dc.description.abstract [EN] In this paper we introduce a function for multilinear operators that can be considered as an extension of the so-called outer measure associated to a linear operator ideal. We prove that it allows to characterize the operators that belong to a closed surjective ideal of multilinear operators as those having measure equal to zero. We also obtain some interpolation formulas for this new measure. As a consequence we deduce interpolation results for arbitrary closed surjective ideals of multilinear operators which recover, in particular, different results previously established in the literature. es_ES
dc.description.sponsorship The authors would like to thank the referees for their useful comments which have led to improve the paper. A. Manzano was supported in part by the Ministerio de Economia, Industria y Competitividad and FEDER under project MTM2017-84058-P. P. Rueda and E. A. Sanchez-Perez were supported in part by the Ministerio de Economia, Industria y Competitividad and FEDER under project MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Duke University Press es_ES
dc.relation.ispartof Banach Journal of Mathematical Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ideal of multilinear operators es_ES
dc.subject Closed ideal es_ES
dc.subject Surjective ideal es_ES
dc.subject Measure associated to an ideal es_ES
dc.subject Interpolation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Closed surjective ideals of multilinear operators and interpolation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s43037-020-00115-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84058-P/ES/INTERPOLACION, ESPACIOS DE FUNCIONES Y COMPACIDAD DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Manzano, A.; Rueda, P.; Sánchez Pérez, EA. (2021). Closed surjective ideals of multilinear operators and interpolation. Banach Journal of Mathematical Analysis. 15(2):1-22. https://doi.org/10.1007/s43037-020-00115-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s43037-020-00115-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\458354 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD es_ES
dc.description.references Astala, K.: On measures of non-compactness and ideal variations in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 29, 1–42 (1980) es_ES
dc.description.references Bényi, Á., Oh, T.: Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators. J. Fourier Anal. Appl. 20, 282–300 (2014) es_ES
dc.description.references Bényi, Á., Torres, R.H.: Compact bilinear operators and commutators. Proc. Am. Math. Soc. 141, 3609–3621 (2013) es_ES
dc.description.references Bergh, J., Löfström, J.: Interpolation spaces (an introduction). Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976) es_ES
dc.description.references Berrios, S., Botelho, G., Rueda, P.: The surjective hull of a polynomial ideal. Math. Nachr. 290, 687–698 (2017) es_ES
dc.description.references Beucher, O.J.: On interpolation of strictly (co-)singular linear operators. Proc. R. Soc. Edinb. 112A, 263–269 (1989) es_ES
dc.description.references Botelho, G., Galindo, P., Pellegrini, L.: Uniform approximation on ideals of multilinear mappings. Math. Scand. 106, 301–319 (2010) es_ES
dc.description.references Botelho, G., Michels, C., Pellegrino, D.: Complex interpolation and summability properties of multilinear operators. Rev. Mat. Complut. 23, 139–161 (2010) es_ES
dc.description.references Botelho, G., Pellegrino, D., Rueda, P.: On composition ideals of multilinear mappings and homogeneous polynomials. Publ. Res. Inst. Math. Sci. 43, 1139–1155 (2007) es_ES
dc.description.references Braunss, H.A., Junek, J.: Factorization of injective ideals by interpolation. J. Math. Anal. Appl. 297, 740–750 (2004) es_ES
dc.description.references Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990) es_ES
dc.description.references Cobos, F., Fernández-Cabrera, L.M., Martínez, A.: On compactness results of Lions-Peetre type for bilinear operators. Nonlinear Anal. 199, 111951 (2020). https://doi.org/10.1016/j.na.2020.111951 es_ES
dc.description.references Cobos, F., Manzano, A., Martínez, A.: Interpolation theory and measures related to operator ideals. Quart. J. Math. 50, 401–416 (1999) es_ES
dc.description.references Cobos, F., Manzano, A., Martínez, A., Matos, P.: On interpolation of strictly singular operators, strictly co-singular operators and related operator ideals. Proc. R. Soc. Edinb. Sect. A Math. 130A, 971–989 (2000) es_ES
dc.description.references Cobos, F., Martínez, A.: Remarks on interpolation properties of the measure of weak non-compactness and ideal variations. Math. Nachr. 208, 93–100 (1999) es_ES
dc.description.references De Blasi, F.S.: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie 21, 259–262 (1977) es_ES
dc.description.references Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993) es_ES
dc.description.references Diestel, J.: A survey of results related to Dunford–Pettis property. Contemp. Math. 2, 15–60 (1980) es_ES
dc.description.references Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summning Operators. Cambridge University Press, Cambridge (1995) es_ES
dc.description.references Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987) es_ES
dc.description.references Fernández, D.L., Mastyło, M., Silva, E.B.: Quasi $$s$$-numbers and measures of non-compactness of multilinear operators. Ann. Acad. Sci. Fenn. 38, 805–823 (2013) es_ES
dc.description.references Fernández-Cabrera, L.M., Martínez, A.: On interpolation properties of compact bilinear operators. Math. Nachr. 290, 1663–1677 (2017) es_ES
dc.description.references Fernández-Cabrera, L.M., Martínez, A.: Real interpolation properties of compact bilinear operators. J. Fourier Anal. Appl. 24, 1181–1203 (2018) es_ES
dc.description.references Geiss, S.: Ein Faktorisierungssatz für multilineare Funktionale. Math. Nachr. 134, 149–159 (1987). (in German) es_ES
dc.description.references Gohberg, I., Gol’dens̆teĭn, L.S., Markus, A.S.: Investigation of some properties of bounded linear operators in connection with their $$q$$-norms. Ucen. Zap. Kishinevsk. Un-ta. 29, 29–36 (1957) (in Russian) es_ES
dc.description.references González, M., Gutiérrez, J.M.: Surjective factorization of holomorphic mappings. Comment. Math. Univ. Carolin. 41, 469–476 (2000) es_ES
dc.description.references Heinrich, S.: Closed operator ideals and interpolation. J. Funct. Anal. 35, 397–411 (1980) es_ES
dc.description.references Hu, G.: Compactness of the commutator of bilinear Fourier multiplier operator. Taiwan. J. Math. 18, 661–675 (2014) es_ES
dc.description.references Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981) es_ES
dc.description.references Maligranda, L., Quevedo, A.: Interpolation of weakly compact operators. Arch. Math. 55, 280–284 (1990) es_ES
dc.description.references Manzano, A.: Medidas asociadas a ideales de operadores y teoría de interpolación. Ph. D thesis, Publicaciones del Departamento de Análisis Matemático, Universidad Complutense de Madrid (2000) es_ES
dc.description.references Manzano, A., Rueda, P., Sánchez-Pérez, E.A.: Closed injective ideals of multilinear operators, related measures and interpolation. Math. Nachr. 293, 510–532 (2020) es_ES
dc.description.references Mastyło, M.: On interpolation spaces with the Gelfand–Phillips property. Math. Nachr. 137, 27–34 (1988) es_ES
dc.description.references Mastyło, M., Silva, E.B.: Interpolation of the measure of non-compactness of bilinear operators. Trans. Am. Math. Soc. 370, 8979–8997 (2018) es_ES
dc.description.references Mastyło, M., Silva, E.B.: Interpolation of compact bilinear operators. Bull. Math. Sci. (2020). https://doi.org/10.1142/S1664360720500022 es_ES
dc.description.references Pełczyński, A.: On strictly singular and strictly cosingular operators I y II. Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 13, 31–41 (1965) es_ES
dc.description.references Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980) es_ES
dc.description.references Pietsch, A.: Ideals of multilinear functionals (designs of a theory). In: Proc. Second Int. Conf. on Operator Algebras, Ideals and Their Applications in Theoretical Physics. Teubner-Texte Math., vol. 67, pp. 185–199 (1983) es_ES
dc.description.references Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem