- -

The D-pi-property on products of pi-decomposable groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The D-pi-property on products of pi-decomposable groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kazarin, L.S. es_ES
dc.contributor.author Martínez-Pastor, Ana es_ES
dc.contributor.author Pérez-Ramos, M. D. es_ES
dc.date.accessioned 2022-10-13T18:06:59Z
dc.date.available 2022-10-13T18:06:59Z
dc.date.issued 2020-11-01 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187679
dc.description.abstract [EN] The aim of this paper is to prove the following result: Let pi be a set of odd primes. If the group G = AB is the product of two p-decomposable subgroups A = A(pi) x A(pi') and B = B-pi x B-pi', then G has a unique conjugacy class of Hall pi-subgroups, and any p-subgroup is contained in a Hall pi-subgroup (i.e. G satisfies property D-pi) es_ES
dc.description.sponsorship Research supported by Proyectos PROMETEO/2017/057 from the Generalitat Valenciana (Valencian Community, Spain), and PGC2018-096872-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades, Spain, and FEDER, European Union; and second author also by Project VIP-008 of Yaroslavl P. Demidov State University. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite groups es_ES
dc.subject Product of subgroups es_ES
dc.subject Pi-structure es_ES
dc.subject Simple groups es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The D-pi-property on products of pi-decomposable groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-020-00950-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/P.G. Demidov Yaroslavl State University//VIP-008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//Prometeo%2F2017%2F057//Grupos y semigrupos: estructura y aplicaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Kazarin, L.; Martínez-Pastor, A.; Pérez-Ramos, MD. (2020). The D-pi-property on products of pi-decomposable groups. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(1):1-18. https://doi.org/10.1007/s13398-020-00950-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s13398-020-00950-z es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\419534 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder P.G. Demidov Yaroslavl State University es_ES
dc.description.references Amberg, B., Franciosi, S., de Giovanni, F.: Products of Groups. Clarendon Press, Oxford (1992) es_ES
dc.description.references Amberg, B., Carocca, A., Kazarin, L.S.: Criteria for the solubility and non-simplicity of finite groups. J. Algebra 28(5), 58–72 (2005) es_ES
dc.description.references Arad, Z., Chillag, D.: Finite groups containing a nilpotent Hall subgroup of even order. Houston J. Math. 7, 23–32 (1981) es_ES
dc.description.references Arad, Z., Fisman, E.: On finite factorizable groups. J. Algebra 86, 522–548 (1984) es_ES
dc.description.references Berkovich, Y.G.: Generalization of the theorems of Carter and Wielandt. Sov. Math. Dokl. 7, 1525–1529 (1966) es_ES
dc.description.references Carter, R.W.: Centralizers of semisimple elements in the finite classical groups. Proc. Lond. Math. Soc. 42, 1–41 (1981) es_ES
dc.description.references Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters of Simple Groups. Clarendon Press, Oxford (1985) es_ES
dc.description.references Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter De Gruyter, Berlin, New York (1992) es_ES
dc.description.references Gross, F.: Odd order Hall subgroups of $$GL_n(q)$$ and $$Sp_{2n}(q)$$. Math. Z. 187, 185–194 (1984) es_ES
dc.description.references Gross, F.: Conjugacy of odd order Hall subgroups. Bull. Lond. Math. Soc. 19, 311–319 (1987) es_ES
dc.description.references Hall, P.: Theorems like Sylow’s. Proc. Lond. Math. Soc. 3(2), 286–304 (1956) es_ES
dc.description.references Huppert, B.: Endliche Gruppen I. Springer, Heidelberg, New York (1967) es_ES
dc.description.references Kazarin, L.S.: Criteria for the nonsimplicity of factorable groups. Izv. Akad. Nauk SSSR Ser. Mat. 44, 288–308 (1980) es_ES
dc.description.references Kazarin, L.S.: On groups which are the product of two soluble groups. Comm. Algebra 14, 1001–1066 (1986) es_ES
dc.description.references Kazarin, L.S.: On a problem of Szép. Math. USSR Izvestiya 28, 467–495 (1987) es_ES
dc.description.references Kazarin, L.S.: Factorizations of finite groups by solvable subgroups. Ukr. Mat. J. 43(7), 883–886 (1991) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of a $$\pi $$-group and a $$\pi $$-decomposable group. J. Algebra 315, 640–653 (2007) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of two $$\pi $$-decomposable soluble groups. Publ. Mat. 53, 439–456 (2009) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A. Pérez-Ramos, M.D.: Extending the Kegel-Wielandt theorem through $$\pi $$-decomposable groups. In: Groups St Andrews 2009 in Bath, vol. 2, Lond. Math. Soc. Lecture Note Ser. 388, pp. 415–423, Cambridge University Press, Cambridge (2011) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: A reduction theorem for a conjecture on products of two $$\pi $$-decomposable groups. J. Algebra 379, 301–313 (2013) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of two $$\pi $$-decomposable groups. Rev. Mat. Iberoam. 31, 51–68 (2015) es_ES
dc.description.references Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: Finite trifactorized groups and $$\pi $$-decomposability. Bull. Aust. Math. Soc. 97, 218–228 (2018) es_ES
dc.description.references Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. Cambridge University Press, Cambridge (1990) es_ES
dc.description.references Li, C.H., Xia, B.: Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups. To appear in Mem. Am. Math. Soc. arXiv:1408.0350 es_ES
dc.description.references Liebeck, M., Praeger, C.E., Saxl, J.: The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Am. Math. Soc. 86, 432 Am. Math. Soc., Providence, RI (1990) es_ES
dc.description.references Revin, D.O., Vdovin, E.P.: Hall subgroups in finite groups. In: Ischia Group Theory 2004, Contemp. Math. 402, pp. 229–263. Am. Math. Soc., Providence, RI (2006) es_ES
dc.description.references Rowley, P.J.: The $$\pi $$-separability of certain factorizable groups. Math. Z. 153, 219–228 (1977) es_ES
dc.description.references Vasiliev, A.V., Vdovin, E.P.: An adjacency criterion for the prime graph of a finite simple group. Algebra Logic 44(6), 381–406 (2005) es_ES
dc.description.references Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Russ. Math. Surv. 66(5), 829–870 (2011) es_ES
dc.description.references Wielandt, H.: Zum Satz von Sylow. Math. Z. 60, 407–408 (1954) es_ES
dc.description.references Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3, 265–284 (1892) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem