- -

The D-pi-property on products of pi-decomposable groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The D-pi-property on products of pi-decomposable groups

Mostrar el registro completo del ítem

Kazarin, L.; Martínez-Pastor, A.; Pérez-Ramos, MD. (2020). The D-pi-property on products of pi-decomposable groups. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(1):1-18. https://doi.org/10.1007/s13398-020-00950-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187679

Ficheros en el ítem

Metadatos del ítem

Título: The D-pi-property on products of pi-decomposable groups
Autor: Kazarin, L.S. Martínez-Pastor, Ana Pérez-Ramos, M. D.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Fecha difusión:
Resumen:
[EN] The aim of this paper is to prove the following result: Let pi be a set of odd primes. If the group G = AB is the product of two p-decomposable subgroups A = A(pi) x A(pi') and B = B-pi x B-pi', then G has a unique ...[+]
Palabras clave: Finite groups , Product of subgroups , Pi-structure , Simple groups
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-020-00950-z
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s13398-020-00950-z
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/
info:eu-repo/grantAgreement/P.G. Demidov Yaroslavl State University//VIP-008/
info:eu-repo/grantAgreement/Generalitat Valenciana//Prometeo%2F2017%2F057//Grupos y semigrupos: estructura y aplicaciones/
Agradecimientos:
Research supported by Proyectos PROMETEO/2017/057 from the Generalitat Valenciana (Valencian Community, Spain), and PGC2018-096872-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades, Spain, and FEDER, European ...[+]
Tipo: Artículo

References

Amberg, B., Franciosi, S., de Giovanni, F.: Products of Groups. Clarendon Press, Oxford (1992)

Amberg, B., Carocca, A., Kazarin, L.S.: Criteria for the solubility and non-simplicity of finite groups. J. Algebra 28(5), 58–72 (2005)

Arad, Z., Chillag, D.: Finite groups containing a nilpotent Hall subgroup of even order. Houston J. Math. 7, 23–32 (1981) [+]
Amberg, B., Franciosi, S., de Giovanni, F.: Products of Groups. Clarendon Press, Oxford (1992)

Amberg, B., Carocca, A., Kazarin, L.S.: Criteria for the solubility and non-simplicity of finite groups. J. Algebra 28(5), 58–72 (2005)

Arad, Z., Chillag, D.: Finite groups containing a nilpotent Hall subgroup of even order. Houston J. Math. 7, 23–32 (1981)

Arad, Z., Fisman, E.: On finite factorizable groups. J. Algebra 86, 522–548 (1984)

Berkovich, Y.G.: Generalization of the theorems of Carter and Wielandt. Sov. Math. Dokl. 7, 1525–1529 (1966)

Carter, R.W.: Centralizers of semisimple elements in the finite classical groups. Proc. Lond. Math. Soc. 42, 1–41 (1981)

Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters of Simple Groups. Clarendon Press, Oxford (1985)

Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter De Gruyter, Berlin, New York (1992)

Gross, F.: Odd order Hall subgroups of $$GL_n(q)$$ and $$Sp_{2n}(q)$$. Math. Z. 187, 185–194 (1984)

Gross, F.: Conjugacy of odd order Hall subgroups. Bull. Lond. Math. Soc. 19, 311–319 (1987)

Hall, P.: Theorems like Sylow’s. Proc. Lond. Math. Soc. 3(2), 286–304 (1956)

Huppert, B.: Endliche Gruppen I. Springer, Heidelberg, New York (1967)

Kazarin, L.S.: Criteria for the nonsimplicity of factorable groups. Izv. Akad. Nauk SSSR Ser. Mat. 44, 288–308 (1980)

Kazarin, L.S.: On groups which are the product of two soluble groups. Comm. Algebra 14, 1001–1066 (1986)

Kazarin, L.S.: On a problem of Szép. Math. USSR Izvestiya 28, 467–495 (1987)

Kazarin, L.S.: Factorizations of finite groups by solvable subgroups. Ukr. Mat. J. 43(7), 883–886 (1991)

Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of a $$\pi $$-group and a $$\pi $$-decomposable group. J. Algebra 315, 640–653 (2007)

Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of two $$\pi $$-decomposable soluble groups. Publ. Mat. 53, 439–456 (2009)

Kazarin, L.S., Martínez-Pastor, A. Pérez-Ramos, M.D.: Extending the Kegel-Wielandt theorem through $$\pi $$-decomposable groups. In: Groups St Andrews 2009 in Bath, vol. 2, Lond. Math. Soc. Lecture Note Ser. 388, pp. 415–423, Cambridge University Press, Cambridge (2011)

Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: A reduction theorem for a conjecture on products of two $$\pi $$-decomposable groups. J. Algebra 379, 301–313 (2013)

Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: On the product of two $$\pi $$-decomposable groups. Rev. Mat. Iberoam. 31, 51–68 (2015)

Kazarin, L.S., Martínez-Pastor, A., Pérez-Ramos, M.D.: Finite trifactorized groups and $$\pi $$-decomposability. Bull. Aust. Math. Soc. 97, 218–228 (2018)

Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. Cambridge University Press, Cambridge (1990)

Li, C.H., Xia, B.: Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups. To appear in Mem. Am. Math. Soc. arXiv:1408.0350

Liebeck, M., Praeger, C.E., Saxl, J.: The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Am. Math. Soc. 86, 432 Am. Math. Soc., Providence, RI (1990)

Revin, D.O., Vdovin, E.P.: Hall subgroups in finite groups. In: Ischia Group Theory 2004, Contemp. Math. 402, pp. 229–263. Am. Math. Soc., Providence, RI (2006)

Rowley, P.J.: The $$\pi $$-separability of certain factorizable groups. Math. Z. 153, 219–228 (1977)

Vasiliev, A.V., Vdovin, E.P.: An adjacency criterion for the prime graph of a finite simple group. Algebra Logic 44(6), 381–406 (2005)

Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Russ. Math. Surv. 66(5), 829–870 (2011)

Wielandt, H.: Zum Satz von Sylow. Math. Z. 60, 407–408 (1954)

Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3, 265–284 (1892)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem