- -

Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor González Ladrón de Guevara, Fernando Raimundo es_ES
dc.contributor.advisor Fernández Diego, Marta es_ES
dc.contributor.author Martínez Cerdá, Luis José es_ES
dc.date.accessioned 2022-10-15T07:11:25Z
dc.date.available 2022-10-15T07:11:25Z
dc.date.created 2022-09-26 es_ES
dc.date.issued 2022-10-15 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187903
dc.description.abstract [ES] Balancing problem New alternatives to obtain balanced data has been used in the recent times of machine learning applications. Oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a source data. Presenting our data The dataset used in this project contains the churn rate of an e-commerce site, being this the of clients that would potentially cancel their membership. The situation is that a small amount of the samples contains the clients that are exited, thus, we are presented with an imbalanced dataset. SMOTE Stage In this project Multiple variants of SMOTE (Synthetic Minority Over-sampling Technique) are presented in a competition to find the model that find the best solution for this problem. We will select the algorithms for this task relying on the Smote Variants package that could be found in Python. Prediction Stage By means of a competition of widely used supervised algorithms we will obtain the optimal model to predict this churn rate. es_ES
dc.description.abstract [EN] Balancing problem New alternatives to obtain balanced data has been used in the recent times of machine learning applications. Oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a source data. Presenting our data The dataset used in this project contains the churn rate of an e-commerce site, being this the of clients that would potentially cancel their membership. The situation is that a small amount of the samples contains the clients that are exited, thus, we are presented with an imbalanced dataset. SMOTE Stage In this project Multiple variants of SMOTE (Synthetic Minority Over-sampling Technique) are presented in a competition to find the model that find the best solution for this problem. We will select the algorithms for this task relying on the Smote Variants package that could be found in Python. Prediction Stage By means of a competition of widely used supervised algorithms we will obtain the optimal model to predict this churn rate. en_EN
dc.format.extent 46 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Churn rate es_ES
dc.subject SMOTE es_ES
dc.subject Balancing data es_ES
dc.subject Oversampling es_ES
dc.subject Machine learning es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.other Máster Universitario en Ingeniería de Telecomunicación-Màster Universitari en Enginyeria de Telecomunicació es_ES
dc.title Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate. es_ES
dc.title.alternative Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate. es_ES
dc.title.alternative Equilibrar les dades amb variants SMOTE mitjançant algorismes d'aprenentatge automàtic supervisat per predir la taxa de rotació. es_ES
dc.type Tesis de máster es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Martínez Cerdá, LJ. (2022). Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate. Universitat Politècnica de València. http://hdl.handle.net/10251/187903 es_ES
dc.description.accrualMethod TFGM es_ES
dc.relation.pasarela TFGM\151107 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem