Mostrar el registro completo del ítem
Martínez Cerdá, LJ. (2022). Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate. Universitat Politècnica de València. http://hdl.handle.net/10251/187903
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187903
Título: | Balancing data with SMOTE variants using supervised machine learning algorithms to predict churn rate. | |||
Otro titulo: |
|
|||
Autor: | Martínez Cerdá, Luis José | |||
Director(es): | ||||
Entidad UPV: |
|
|||
Fecha acto/lectura: |
|
|||
Resumen: |
[ES] Balancing problem
New alternatives to obtain balanced data has been used in the recent times of machine learning applications. Oversampling and undersampling in data analysis are techniques used to adjust the class ...[+]
[EN] Balancing problem
New alternatives to obtain balanced data has been used in the recent times of machine learning applications. Oversampling and undersampling in data analysis are techniques used to adjust the class ...[+]
|
|||
Palabras clave: |
|
|||
Derechos de uso: | Reserva de todos los derechos | |||
Editorial: |
|
|||
Titulación: |
|
|||
Tipo: |
|