Mostrar el registro completo del ítem
Novaes, MP.; Carvalho, LF.; Lloret, J.; Lemes Proença, M. (2020). Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment. IEEE Access. 8(1):83765-83781. https://doi.org/10.1109/ACCESS.2020.2992044
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188040
Título: | Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment | |
Autor: | Novaes, Matheus P. Carvalho, Luiz F. Lemes Proença, Mario | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Computer networks become complex and dynamic structures. As a result of this fact, the configuration and the managing of this whole structure is a challenging activity. Software-Defined Networks(SDN) is a new network ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | http://doi.org/10.1109/ACCESS.2020.2992044 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Project 310668/2019-0, in part by the SETI/Fundacao Araucaria due to the concession of scholarships, ...[+]
|
|
Tipo: |
|