Mostrar el registro sencillo del ítem
dc.contributor.author | Novaes, Matheus P.![]() |
es_ES |
dc.contributor.author | Carvalho, Luiz F.![]() |
es_ES |
dc.contributor.author | Lloret, Jaime![]() |
es_ES |
dc.contributor.author | Lemes Proença, Mario![]() |
es_ES |
dc.date.accessioned | 2022-10-17T18:03:27Z | |
dc.date.available | 2022-10-17T18:03:27Z | |
dc.date.issued | 2020-05-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188040 | |
dc.description.abstract | [EN] Computer networks become complex and dynamic structures. As a result of this fact, the configuration and the managing of this whole structure is a challenging activity. Software-Defined Networks(SDN) is a new network paradigm that, through an abstraction of network plans, seeks to separate the control plane and data plane, and tends as an objective to overcome the limitations in terms of network infrastructure configuration. As in the traditional network environment, the SDN environment is also liable to security vulnerabilities. This work presents a system of detection and mitigation of Distributed Denial of Service (DDoS) attacks and Portscan attacks in SDN environments (LSTM-FUZZY). The LSTM-FUZZY system presented in this work has three distinct phases: characterization, anomaly detection, and mitigation. The system was tested in two scenarios. In the first scenario, we applied IP flows collected from the SDN Floodlight controllers through emulation on Mininet. On the other hand, in the second scenario, the CICDDoS 2019 dataset was applied. The results gained show that the efficiency of the system to assist in network management, detect and mitigate the occurrence of the attacks. | es_ES |
dc.description.sponsorship | This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Project 310668/2019-0, in part by the SETI/Fundacao Araucaria due to the concession of scholarships, and in part by the Ministerio de Economia y Competitividad through the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento, under Grant TIN2017-84802-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | DDoS | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Fuzzy | es_ES |
dc.subject | LSTM | es_ES |
dc.subject | Portscan | es_ES |
dc.subject | SDN | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2020.2992044 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//310668%2F2019-0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Novaes, MP.; Carvalho, LF.; Lloret, J.; Lemes Proença, M. (2020). Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment. IEEE Access. 8(1):83765-83781. https://doi.org/10.1109/ACCESS.2020.2992044 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/ACCESS.2020.2992044 | es_ES |
dc.description.upvformatpinicio | 83765 | es_ES |
dc.description.upvformatpfin | 83781 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\473161 | es_ES |
dc.contributor.funder | Fundação Araucária, Brasil | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |