- -

Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks

Mostrar el registro completo del ítem

Ren, Z.; Mukherjee, M.; Bennis, M.; Lloret, J. (2021). Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks. IEEE Journal on Selected Areas in Communications. 39(7):1946-1956. https://doi.org/10.1109/JSAC.2020.3041396

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188195

Ficheros en el ítem

Metadatos del ítem

Título: Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks
Autor: Ren, Zhenwen Mukherjee, Mithun Bennis, Mehdi Lloret, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Next-generation wireless networks are witnessing an increasing number of clustering applications, and produce a large amount of non-linear and unlabeled data. In some degree, single kernel methods face the challenging ...[+]
Palabras clave: Kernel , Tensors , Correlation , Internet of Things , Task analysis , Linear programming , Clustering algorithms , Multiple kernel clustering , Intelligent network , Distributed computation , Non-negative matrix factorization , Tensor learning
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Journal on Selected Areas in Communications. (issn: 0733-8716 )
DOI: 10.1109/JSAC.2020.3041396
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/JSAC.2020.3041396
Código del Proyecto:
info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0043/
...[+]
info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0043/
info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2020ZDZX0014/
info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2020E10015/
info:eu-repo/grantAgreement/Natural Science Foundation of Chongqing//cstc2020jcyj-msxmX0473/
info:eu-repo/grantAgreement/SPDST//17ZB0441/
info:eu-repo/grantAgreement/SWUST//17zx7137/
[-]
Descripción: © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Agradecimientos:
This work was supported in part by the Sichuan Science and Technology Program under Grant 2019ZDZX0043 and Grant 2020ZDZX0014, in part by the Key Laboratory of Film and TV Media Technology of Zhejiang Province under Grant ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem