- -

Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ren, Zhenwen es_ES
dc.contributor.author Mukherjee, Mithun es_ES
dc.contributor.author Bennis, Mehdi es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-18T18:03:34Z
dc.date.available 2022-10-18T18:03:34Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 0733-8716 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188195
dc.description © 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract [EN] Next-generation wireless networks are witnessing an increasing number of clustering applications, and produce a large amount of non-linear and unlabeled data. In some degree, single kernel methods face the challenging problem of kernel choice. To overcome this problem for non-linear data clustering, multiple kernel graph-based clustering (MKGC) has attracted intense attention in recent years. However, existing MKGC methods suffer from two common problems: (1) they mainly aim to learn a consensus kernel from multiple candidate kernels, slight affinity graph learning, such that cannot fully exploit the underlying graph structure of non-linear data; (2) they disregard the high-order correlations between all base kernels, which cannot fully capture the consistent and complementary information of all kernels. In this paper, we propose a novel non-negative matrix factorization (NMF) tailored graph tensor MKGC method for non-linear data clustering, namely TMKGC. Specifically, TMKGC integrates NMF and graph learning together in kernel space so as to learn multiple candidate affinity graphs. Afterwards, the high-order structure information of all candidate graphs is captured in a 3-order tensor kernel space by introducing tensor singular value decomposition based tensor nuclear norm, such that an optimal affinity graph can be obtained subsequently. Based on the alternating direction method of multipliers, the effective local and distributed solvers are elaborated to solve the proposed objective function. Extensive experiments have demonstrated the superiority of TMKGC compared to the state-of-the-art MKGC methods. es_ES
dc.description.sponsorship This work was supported in part by the Sichuan Science and Technology Program under Grant 2019ZDZX0043 and Grant 2020ZDZX0014, in part by the Key Laboratory of Film and TV Media Technology of Zhejiang Province under Grant 2020E10015, in part by the Natural Science Foundation of Chongqing under Grant cstc2020jcyj-msxmX0473, in part by the Scientific Research Fund of Sichuan Provincial Education Department under Grant 17ZB0441, in part by the Scientific Research Fund of Southwest University of Science and Technology under Grant 17zx7137, and in part by the Academy of Finland projects CARMA and SMARTER. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Journal on Selected Areas in Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Kernel es_ES
dc.subject Tensors es_ES
dc.subject Correlation es_ES
dc.subject Internet of Things es_ES
dc.subject Task analysis es_ES
dc.subject Linear programming es_ES
dc.subject Clustering algorithms es_ES
dc.subject Multiple kernel clustering es_ES
dc.subject Intelligent network es_ES
dc.subject Distributed computation es_ES
dc.subject Non-negative matrix factorization es_ES
dc.subject Tensor learning es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JSAC.2020.3041396 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0043/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2020ZDZX0014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2020E10015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Chongqing//cstc2020jcyj-msxmX0473/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SPDST//17ZB0441/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SWUST//17zx7137/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ren, Z.; Mukherjee, M.; Bennis, M.; Lloret, J. (2021). Multikernel Clustering via Non-Negative Matrix Factorization Tailored Graph Tensor Over Distributed Networks. IEEE Journal on Selected Areas in Communications. 39(7):1946-1956. https://doi.org/10.1109/JSAC.2020.3041396 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JSAC.2020.3041396 es_ES
dc.description.upvformatpinicio 1946 es_ES
dc.description.upvformatpfin 1956 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\473215 es_ES
dc.contributor.funder Academy of Finland es_ES
dc.contributor.funder Natural Science Foundation of Chongqing es_ES
dc.contributor.funder Southwest University of Science and Technology, China es_ES
dc.contributor.funder Science and Technology Department of Zhejiang Province es_ES
dc.contributor.funder Sichuan Province Science and Technology Support Program es_ES
dc.contributor.funder Department of Science and Technology of Sichuan Province es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem