Marmolejo-Saucedo, J.A., Hartmann, S.: Trends in digitization of the supply chain: a brief literature review. EAI End. Trans. Energy Web 7(29), e8 (2020)
Büyüközkan, G., Göçer, F.: Digital supply chain: literature review and a proposed framework for future research. Comput. Ind. 97, 157–177 (2018)
Feldt, J., Kourouklis, T., Kontny, H., Wagenitz, A., Teti, R., D’Addona, D.M.: Digital twin: revealing potentials of real-time autonomous decisions at a manufacturing company. Procedia CIRP 88, 185–190 (2020)
[+]
Marmolejo-Saucedo, J.A., Hartmann, S.: Trends in digitization of the supply chain: a brief literature review. EAI End. Trans. Energy Web 7(29), e8 (2020)
Büyüközkan, G., Göçer, F.: Digital supply chain: literature review and a proposed framework for future research. Comput. Ind. 97, 157–177 (2018)
Feldt, J., Kourouklis, T., Kontny, H., Wagenitz, A., Teti, R., D’Addona, D.M.: Digital twin: revealing potentials of real-time autonomous decisions at a manufacturing company. Procedia CIRP 88, 185–190 (2020)
Marmolejo-Saucedo, J.A., Hurtado-Hernandez, M., Suarez-Valdes, R.: Digital twins in supply chain management: a brief literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 653–661. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_63
Angione, G., Cristalli, C., Barbosa, J., Leitão, P.: Integration challenges for the deployment of a multi-stage zero-defect manufacturing architecture. In: International Conference on Industrial Informatics (INDIN), Institute Electrical and Electronics Engineers Inc., pp. 1615–1620 (2019)
Usuga, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf 31(6), 1531–1558 (2020)
Abu-Bakar, M., Abbas, I., Kalal, M., Alsattar, H., Bakhayt, A.G., Kalaf, B.: Solution for multi-objective optimisation master production scheduling problems based on swarm intelligence algorithms. J. Comput. Theoret. Nanosci. 14, 5184–5194 (2017)
Ould-Louly, M.A., Dolgui, A.: The MPS planning under lead time uncertainty. In: Proceeding of the Workshop on Production Planning and Control, pp. 148–155 (2020)
Stich, V., Adema, J., Blum, M., Reschke, J.: Supply chain 4.0: Logistikdienstleister im Kontext der vierten industriellen Revolution. In: Voß, P.H. (ed.) Logistik – eine Industrie, die (sich) bewegt, pp. 63–76. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-10609-6_6
Frederico, G.F., Garza-Reyes, J.A., Anosike, A., Kumar, V.: Supply chain 4.0: concepts, maturity and research agenda. Supply Chain Manage. 25, 262–282 (2019)
Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., Garza-Reyes, J.A.: Supply chain management 4.0: a literature review and research framework. Benchmarking 28, 465–501 (2020)
Maryniak, A., Bulhakova, Y., Lewoniewski, W., Bal, M.: Diffusion of knowledge in the supply chain over thirty years - thematic areas and sources of publications. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST. CCIS, vol. 1283, pp. 113–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_10
Chern, C.-C., Lei, S.-T., Huang, K.-L.: Solving a multi-objective master planning problem with substitution and a recycling process for a capacitated multi-commodity supply chain network. J. Intell. Manuf. 25, 1–25 (2014)
Grillo, H., Peidro, D., Alemany, M.M.E., Mula, J.: Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model. Int. J. Bio-Inspired Comput. 7, 157–169 (2015)
Sutthibutr, N., Chiadamrong, N.: Applied fuzzy multi-objective with α-cut analysis for optimizing supply chain master planning problem. In: ACM International Conference Proceeding Series, Association for Computing Machinery, pp. 84–91 (2019)
Arani, H.V., Torabi, S.A.: Integrated material-financial supply chain master planning under mixed uncertainty. Inf. Sci. 423, 96–114 (2018)
Ghasemy-Yaghin, R., Sarlak, P., Ghareaghaji, A.A.: Robust master planning of a socially responsible supply chain under fuzzy-stochastic uncertainty (a case study of clothing industry). Eng. Appl. Artif. Intell. 94, 103715 (2020)
Martín, A.G., Díaz-Madroñero, M., Mula, J.: Master production schedule using robust optimization approaches in an automobile second-tier supplier. CEJOR 28(1), 143–166 (2020)
Peidro, D., Mula, J., Alemany, M.M.E., Lario, F.-C.: Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. Int. J. Prod. Res. 50, 3011–3020 (2012)
Orozco-Romero, A., Arias-Portela, C.Y., Saucedo, J.: The use of agent-based models boosted by digital twins in the supply chain: a literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 642–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_62
Barykin, S.Y., Bochkarev, A.A., Kalinina, O.V., Yadykin, V.K.: Concept for a supply chain digital twin. Int. J. Math. Eng. Manage. Sci. 5, 1498–1515 (2020)
Ivanov, D., Dolgui, A., Das, A., Sokolov, B.: Digital supply chain twins: managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In: Ivanov, D., Dolgui, A., Sokolov, B. (eds.) Handbook of Ripple Effects in the Supply Chain. ISORMS, vol. 276, pp. 309–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14302-2_15
Ivanov, D., Das, A.: Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note. Int. J. Integr. Supply Manage. 13, 90–102 (2020)
Dolgui, A., Ivanov, D., Sokolov, B.: Reconfigurable supply chain: the X-network. Int. J. Prod. Res. 58, 4138–4163 (2020)
Park, K.T., Son, Y.H., Noh, S.D.: The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res., 1–22 (2020)
Wang, Y., Wang, X., Liu, A., Gao, R.X., Ehmann, K.: Digital twin-driven supply chain planning. Procedia CIRP 93, 198–203 (2020)
Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL. LNCS, vol. 12433, pp. 584–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_38
Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty. In: Proceedings Chinese Automation Congress, CAC, Institute of Electrical and Electronics Engineers Inc., pp. 3512–3517 (2019)
Lauer, T., Legner, S.: Plan instability prediction by machine learning in master production planning. In: International Conference on Automation Science and Engineering (CASE), Institute of Electrical and Electronics Engineers Inc., pp. 703–708 (2019)
Siddh, M.M., Soni, G., Gadekar, G., Jain, R.: Integrating lean six sigma and supply chain approach for quality and business performance. In: International Conference on Business and Information Management, ICBIM, Institute of Electrical and Electronics Engineers Inc., pp. 53–57 (2014)
Pardamean, G.D., Wibisono, E.: A framework for the impact of lean six sigma on supply chain performance in manufacturing companies. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 528 (2019)
Poornachandrika, V., Venkatasudhakar, M.: Quality transformation to improve customer satisfaction: using product, process, system and behaviour model. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 923 (2020)
Thakur, V., Mangla, S.K.: Change management for sustainability: evaluating the role of human, operational and technological factors in leading Indian firms in home appliances sector. J. Clean. Prod. 213, 847–862 (2019)
Lindström, J., Kyösti, P., Birk, W., Lejon, E.: An initial model for zero defect manufacturing. Appl. Sci. 10, 4570 (2020)
[-]