Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, Julio C. | es_ES |
dc.contributor.author | Mula, Josefa | es_ES |
dc.contributor.author | Poler, R. | es_ES |
dc.date.accessioned | 2022-10-19T18:04:24Z | |
dc.date.available | 2022-10-19T18:04:24Z | |
dc.date.issued | 2021-06-30 | es_ES |
dc.identifier.issn | 1868-4238 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188312 | |
dc.description.abstract | [EN] Recently, many novel paradigms, concepts and technologies, which lay the foundation for the new revolution in manufacturing environments, have emerged and make it faster to address critical decisions today in supply chain 4.0 (SC4.0), with flexibility, resilience, sustainability and quality criteria. The current power of computational resources enables intelligent optimisation algorithms to process manufacturing data in such a way, that simulating supply chain (SC) planning performance in real time is now possible, which allows relevant information to be acquired so that SC nodes are digitally interconnected. This paper proposes a conceptual framework based on a digital twin (DT) to model, optimise and prescribe a SC¿s master production schedule (MPS) in a zero-defect environment. The proposed production technologies focus on the scientific development and resolution of new models and optimisation algorithms for the MPS problem in SC4.0. | es_ES |
dc.description.sponsorship | The research leading to these results received funding from the EuropeanUnion H2020 Program with grant agreement No. 825631 Zero Defect Manufacturing Platform(ZDMP) and with grant agreement No. 958205 Industrial Data Services for Quality Control inSmart Manufacturing (i4Q) and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 Optimisation of zero-defects productiontechnologies enabling supply chains 4.0 (CADS4.0). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | IFIP Advances in Information and Communication Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Supply chain 4.0 | es_ES |
dc.subject | Master production schedule | es_ES |
dc.subject | Digital twin | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Zero-defect manufacturing | es_ES |
dc.subject | Conceptual framework | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Digital twin for supply chain master planning in zero-defect manufacturing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/978-3-030-78288-7_10 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825631/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/958205/EU | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Serrano, JC.; Mula, J.; Poler, R. (2021). Digital twin for supply chain master planning in zero-defect manufacturing. IFIP Advances in Information and Communication Technology. 626:102-111. https://doi.org/10.1007/978-3-030-78288-7_10 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-78288-7_10 | es_ES |
dc.description.upvformatpinicio | 102 | es_ES |
dc.description.upvformatpfin | 111 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 626 | es_ES |
dc.relation.pasarela | S\446685 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.description.references | Marmolejo-Saucedo, J.A., Hartmann, S.: Trends in digitization of the supply chain: a brief literature review. EAI End. Trans. Energy Web 7(29), e8 (2020) | es_ES |
dc.description.references | Büyüközkan, G., Göçer, F.: Digital supply chain: literature review and a proposed framework for future research. Comput. Ind. 97, 157–177 (2018) | es_ES |
dc.description.references | Feldt, J., Kourouklis, T., Kontny, H., Wagenitz, A., Teti, R., D’Addona, D.M.: Digital twin: revealing potentials of real-time autonomous decisions at a manufacturing company. Procedia CIRP 88, 185–190 (2020) | es_ES |
dc.description.references | Marmolejo-Saucedo, J.A., Hurtado-Hernandez, M., Suarez-Valdes, R.: Digital twins in supply chain management: a brief literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 653–661. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_63 | es_ES |
dc.description.references | Angione, G., Cristalli, C., Barbosa, J., Leitão, P.: Integration challenges for the deployment of a multi-stage zero-defect manufacturing architecture. In: International Conference on Industrial Informatics (INDIN), Institute Electrical and Electronics Engineers Inc., pp. 1615–1620 (2019) | es_ES |
dc.description.references | Usuga, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf 31(6), 1531–1558 (2020) | es_ES |
dc.description.references | Abu-Bakar, M., Abbas, I., Kalal, M., Alsattar, H., Bakhayt, A.G., Kalaf, B.: Solution for multi-objective optimisation master production scheduling problems based on swarm intelligence algorithms. J. Comput. Theoret. Nanosci. 14, 5184–5194 (2017) | es_ES |
dc.description.references | Ould-Louly, M.A., Dolgui, A.: The MPS planning under lead time uncertainty. In: Proceeding of the Workshop on Production Planning and Control, pp. 148–155 (2020) | es_ES |
dc.description.references | Stich, V., Adema, J., Blum, M., Reschke, J.: Supply chain 4.0: Logistikdienstleister im Kontext der vierten industriellen Revolution. In: Voß, P.H. (ed.) Logistik – eine Industrie, die (sich) bewegt, pp. 63–76. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-10609-6_6 | es_ES |
dc.description.references | Frederico, G.F., Garza-Reyes, J.A., Anosike, A., Kumar, V.: Supply chain 4.0: concepts, maturity and research agenda. Supply Chain Manage. 25, 262–282 (2019) | es_ES |
dc.description.references | Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., Garza-Reyes, J.A.: Supply chain management 4.0: a literature review and research framework. Benchmarking 28, 465–501 (2020) | es_ES |
dc.description.references | Maryniak, A., Bulhakova, Y., Lewoniewski, W., Bal, M.: Diffusion of knowledge in the supply chain over thirty years - thematic areas and sources of publications. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST. CCIS, vol. 1283, pp. 113–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_10 | es_ES |
dc.description.references | Chern, C.-C., Lei, S.-T., Huang, K.-L.: Solving a multi-objective master planning problem with substitution and a recycling process for a capacitated multi-commodity supply chain network. J. Intell. Manuf. 25, 1–25 (2014) | es_ES |
dc.description.references | Grillo, H., Peidro, D., Alemany, M.M.E., Mula, J.: Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model. Int. J. Bio-Inspired Comput. 7, 157–169 (2015) | es_ES |
dc.description.references | Sutthibutr, N., Chiadamrong, N.: Applied fuzzy multi-objective with α-cut analysis for optimizing supply chain master planning problem. In: ACM International Conference Proceeding Series, Association for Computing Machinery, pp. 84–91 (2019) | es_ES |
dc.description.references | Arani, H.V., Torabi, S.A.: Integrated material-financial supply chain master planning under mixed uncertainty. Inf. Sci. 423, 96–114 (2018) | es_ES |
dc.description.references | Ghasemy-Yaghin, R., Sarlak, P., Ghareaghaji, A.A.: Robust master planning of a socially responsible supply chain under fuzzy-stochastic uncertainty (a case study of clothing industry). Eng. Appl. Artif. Intell. 94, 103715 (2020) | es_ES |
dc.description.references | Martín, A.G., Díaz-Madroñero, M., Mula, J.: Master production schedule using robust optimization approaches in an automobile second-tier supplier. CEJOR 28(1), 143–166 (2020) | es_ES |
dc.description.references | Peidro, D., Mula, J., Alemany, M.M.E., Lario, F.-C.: Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. Int. J. Prod. Res. 50, 3011–3020 (2012) | es_ES |
dc.description.references | Orozco-Romero, A., Arias-Portela, C.Y., Saucedo, J.: The use of agent-based models boosted by digital twins in the supply chain: a literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 642–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_62 | es_ES |
dc.description.references | Barykin, S.Y., Bochkarev, A.A., Kalinina, O.V., Yadykin, V.K.: Concept for a supply chain digital twin. Int. J. Math. Eng. Manage. Sci. 5, 1498–1515 (2020) | es_ES |
dc.description.references | Ivanov, D., Dolgui, A., Das, A., Sokolov, B.: Digital supply chain twins: managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In: Ivanov, D., Dolgui, A., Sokolov, B. (eds.) Handbook of Ripple Effects in the Supply Chain. ISORMS, vol. 276, pp. 309–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14302-2_15 | es_ES |
dc.description.references | Ivanov, D., Das, A.: Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note. Int. J. Integr. Supply Manage. 13, 90–102 (2020) | es_ES |
dc.description.references | Dolgui, A., Ivanov, D., Sokolov, B.: Reconfigurable supply chain: the X-network. Int. J. Prod. Res. 58, 4138–4163 (2020) | es_ES |
dc.description.references | Park, K.T., Son, Y.H., Noh, S.D.: The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res., 1–22 (2020) | es_ES |
dc.description.references | Wang, Y., Wang, X., Liu, A., Gao, R.X., Ehmann, K.: Digital twin-driven supply chain planning. Procedia CIRP 93, 198–203 (2020) | es_ES |
dc.description.references | Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL. LNCS, vol. 12433, pp. 584–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_38 | es_ES |
dc.description.references | Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty. In: Proceedings Chinese Automation Congress, CAC, Institute of Electrical and Electronics Engineers Inc., pp. 3512–3517 (2019) | es_ES |
dc.description.references | Lauer, T., Legner, S.: Plan instability prediction by machine learning in master production planning. In: International Conference on Automation Science and Engineering (CASE), Institute of Electrical and Electronics Engineers Inc., pp. 703–708 (2019) | es_ES |
dc.description.references | Siddh, M.M., Soni, G., Gadekar, G., Jain, R.: Integrating lean six sigma and supply chain approach for quality and business performance. In: International Conference on Business and Information Management, ICBIM, Institute of Electrical and Electronics Engineers Inc., pp. 53–57 (2014) | es_ES |
dc.description.references | Pardamean, G.D., Wibisono, E.: A framework for the impact of lean six sigma on supply chain performance in manufacturing companies. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 528 (2019) | es_ES |
dc.description.references | Poornachandrika, V., Venkatasudhakar, M.: Quality transformation to improve customer satisfaction: using product, process, system and behaviour model. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 923 (2020) | es_ES |
dc.description.references | Thakur, V., Mangla, S.K.: Change management for sustainability: evaluating the role of human, operational and technological factors in leading Indian firms in home appliances sector. J. Clean. Prod. 213, 847–862 (2019) | es_ES |
dc.description.references | Lindström, J., Kyösti, P., Birk, W., Lejon, E.: An initial model for zero defect manufacturing. Appl. Sci. 10, 4570 (2020) | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |