- -

Digital twin for supply chain master planning in zero-defect manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital twin for supply chain master planning in zero-defect manufacturing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, Julio C. es_ES
dc.contributor.author Mula, Josefa es_ES
dc.contributor.author Poler, R. es_ES
dc.date.accessioned 2022-10-19T18:04:24Z
dc.date.available 2022-10-19T18:04:24Z
dc.date.issued 2021-06-30 es_ES
dc.identifier.issn 1868-4238 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188312
dc.description.abstract [EN] Recently, many novel paradigms, concepts and technologies, which lay the foundation for the new revolution in manufacturing environments, have emerged and make it faster to address critical decisions today in supply chain 4.0 (SC4.0), with flexibility, resilience, sustainability and quality criteria. The current power of computational resources enables intelligent optimisation algorithms to process manufacturing data in such a way, that simulating supply chain (SC) planning performance in real time is now possible, which allows relevant information to be acquired so that SC nodes are digitally interconnected. This paper proposes a conceptual framework based on a digital twin (DT) to model, optimise and prescribe a SC¿s master production schedule (MPS) in a zero-defect environment. The proposed production technologies focus on the scientific development and resolution of new models and optimisation algorithms for the MPS problem in SC4.0. es_ES
dc.description.sponsorship The research leading to these results received funding from the EuropeanUnion H2020 Program with grant agreement No. 825631 Zero Defect Manufacturing Platform(ZDMP) and with grant agreement No. 958205 Industrial Data Services for Quality Control inSmart Manufacturing (i4Q) and from the Spanish Ministry of Science, Innovation and Universities under grant agreement RTI2018-101344-B-I00 Optimisation of zero-defects productiontechnologies enabling supply chains 4.0 (CADS4.0). es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof IFIP Advances in Information and Communication Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Supply chain 4.0 es_ES
dc.subject Master production schedule es_ES
dc.subject Digital twin es_ES
dc.subject Reinforcement learning es_ES
dc.subject Zero-defect manufacturing es_ES
dc.subject Conceptual framework es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Digital twin for supply chain master planning in zero-defect manufacturing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/978-3-030-78288-7_10 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101344-B-I00/ES/OPTIMIZACION DE TECNOLOGIAS DE PRODUCCION CERO-DEFECTOS HABILITADORAS PARA CADENAS DE SUMINISTRO 4.0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/825631/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/958205/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Serrano, JC.; Mula, J.; Poler, R. (2021). Digital twin for supply chain master planning in zero-defect manufacturing. IFIP Advances in Information and Communication Technology. 626:102-111. https://doi.org/10.1007/978-3-030-78288-7_10 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-78288-7_10 es_ES
dc.description.upvformatpinicio 102 es_ES
dc.description.upvformatpfin 111 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 626 es_ES
dc.relation.pasarela S\446685 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Marmolejo-Saucedo, J.A., Hartmann, S.: Trends in digitization of the supply chain: a brief literature review. EAI End. Trans. Energy Web 7(29), e8 (2020) es_ES
dc.description.references Büyüközkan, G., Göçer, F.: Digital supply chain: literature review and a proposed framework for future research. Comput. Ind. 97, 157–177 (2018) es_ES
dc.description.references Feldt, J., Kourouklis, T., Kontny, H., Wagenitz, A., Teti, R., D’Addona, D.M.: Digital twin: revealing potentials of real-time autonomous decisions at a manufacturing company. Procedia CIRP 88, 185–190 (2020) es_ES
dc.description.references Marmolejo-Saucedo, J.A., Hurtado-Hernandez, M., Suarez-Valdes, R.: Digital twins in supply chain management: a brief literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 653–661. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_63 es_ES
dc.description.references Angione, G., Cristalli, C., Barbosa, J., Leitão, P.: Integration challenges for the deployment of a multi-stage zero-defect manufacturing architecture. In: International Conference on Industrial Informatics (INDIN), Institute Electrical and Electronics Engineers Inc., pp. 1615–1620 (2019) es_ES
dc.description.references Usuga, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf 31(6), 1531–1558 (2020) es_ES
dc.description.references Abu-Bakar, M., Abbas, I., Kalal, M., Alsattar, H., Bakhayt, A.G., Kalaf, B.: Solution for multi-objective optimisation master production scheduling problems based on swarm intelligence algorithms. J. Comput. Theoret. Nanosci. 14, 5184–5194 (2017) es_ES
dc.description.references Ould-Louly, M.A., Dolgui, A.: The MPS planning under lead time uncertainty. In: Proceeding of the Workshop on Production Planning and Control, pp. 148–155 (2020) es_ES
dc.description.references Stich, V., Adema, J., Blum, M., Reschke, J.: Supply chain 4.0: Logistikdienstleister im Kontext der vierten industriellen Revolution. In: Voß, P.H. (ed.) Logistik – eine Industrie, die (sich) bewegt, pp. 63–76. Springer, Wiesbaden (2015). https://doi.org/10.1007/978-3-658-10609-6_6 es_ES
dc.description.references Frederico, G.F., Garza-Reyes, J.A., Anosike, A., Kumar, V.: Supply chain 4.0: concepts, maturity and research agenda. Supply Chain Manage. 25, 262–282 (2019) es_ES
dc.description.references Zekhnini, K., Cherrafi, A., Bouhaddou, I., Benghabrit, Y., Garza-Reyes, J.A.: Supply chain management 4.0: a literature review and research framework. Benchmarking 28, 465–501 (2020) es_ES
dc.description.references Maryniak, A., Bulhakova, Y., Lewoniewski, W., Bal, M.: Diffusion of knowledge in the supply chain over thirty years - thematic areas and sources of publications. In: Lopata, A., Butkienė, R., Gudonienė, D., Sukackė, V. (eds.) ICIST. CCIS, vol. 1283, pp. 113–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59506-7_10 es_ES
dc.description.references Chern, C.-C., Lei, S.-T., Huang, K.-L.: Solving a multi-objective master planning problem with substitution and a recycling process for a capacitated multi-commodity supply chain network. J. Intell. Manuf. 25, 1–25 (2014) es_ES
dc.description.references Grillo, H., Peidro, D., Alemany, M.M.E., Mula, J.: Application of particle swarm optimisation with backward calculation to solve a fuzzy multi-objective supply chain master planning model. Int. J. Bio-Inspired Comput. 7, 157–169 (2015) es_ES
dc.description.references Sutthibutr, N., Chiadamrong, N.: Applied fuzzy multi-objective with α-cut analysis for optimizing supply chain master planning problem. In: ACM International Conference Proceeding Series, Association for Computing Machinery, pp. 84–91 (2019) es_ES
dc.description.references Arani, H.V., Torabi, S.A.: Integrated material-financial supply chain master planning under mixed uncertainty. Inf. Sci. 423, 96–114 (2018) es_ES
dc.description.references Ghasemy-Yaghin, R., Sarlak, P., Ghareaghaji, A.A.: Robust master planning of a socially responsible supply chain under fuzzy-stochastic uncertainty (a case study of clothing industry). Eng. Appl. Artif. Intell. 94, 103715 (2020) es_ES
dc.description.references Martín, A.G., Díaz-Madroñero, M., Mula, J.: Master production schedule using robust optimization approaches in an automobile second-tier supplier. CEJOR 28(1), 143–166 (2020) es_ES
dc.description.references Peidro, D., Mula, J., Alemany, M.M.E., Lario, F.-C.: Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. Int. J. Prod. Res. 50, 3011–3020 (2012) es_ES
dc.description.references Orozco-Romero, A., Arias-Portela, C.Y., Saucedo, J.: The use of agent-based models boosted by digital twins in the supply chain: a literature review. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO. AISC, vol. 1072, pp. 642–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_62 es_ES
dc.description.references Barykin, S.Y., Bochkarev, A.A., Kalinina, O.V., Yadykin, V.K.: Concept for a supply chain digital twin. Int. J. Math. Eng. Manage. Sci. 5, 1498–1515 (2020) es_ES
dc.description.references Ivanov, D., Dolgui, A., Das, A., Sokolov, B.: Digital supply chain twins: managing the ripple effect, resilience, and disruption risks by data-driven optimization, simulation, and visibility. In: Ivanov, D., Dolgui, A., Sokolov, B. (eds.) Handbook of Ripple Effects in the Supply Chain. ISORMS, vol. 276, pp. 309–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14302-2_15 es_ES
dc.description.references Ivanov, D., Das, A.: Coronavirus (COVID-19/SARS-CoV-2) and supply chain resilience: a research note. Int. J. Integr. Supply Manage. 13, 90–102 (2020) es_ES
dc.description.references Dolgui, A., Ivanov, D., Sokolov, B.: Reconfigurable supply chain: the X-network. Int. J. Prod. Res. 58, 4138–4163 (2020) es_ES
dc.description.references Park, K.T., Son, Y.H., Noh, S.D.: The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res., 1–22 (2020) es_ES
dc.description.references Wang, Y., Wang, X., Liu, A., Gao, R.X., Ehmann, K.: Digital twin-driven supply chain planning. Procedia CIRP 93, 198–203 (2020) es_ES
dc.description.references Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL. LNCS, vol. 12433, pp. 584–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_38 es_ES
dc.description.references Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learning approach for capacitated supply chain optimization under demand uncertainty. In: Proceedings Chinese Automation Congress, CAC, Institute of Electrical and Electronics Engineers Inc., pp. 3512–3517 (2019) es_ES
dc.description.references Lauer, T., Legner, S.: Plan instability prediction by machine learning in master production planning. In: International Conference on Automation Science and Engineering (CASE), Institute of Electrical and Electronics Engineers Inc., pp. 703–708 (2019) es_ES
dc.description.references Siddh, M.M., Soni, G., Gadekar, G., Jain, R.: Integrating lean six sigma and supply chain approach for quality and business performance. In: International Conference on Business and Information Management, ICBIM, Institute of Electrical and Electronics Engineers Inc., pp. 53–57 (2014) es_ES
dc.description.references Pardamean, G.D., Wibisono, E.: A framework for the impact of lean six sigma on supply chain performance in manufacturing companies. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 528 (2019) es_ES
dc.description.references Poornachandrika, V., Venkatasudhakar, M.: Quality transformation to improve customer satisfaction: using product, process, system and behaviour model. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing Ltd., vol. 923 (2020) es_ES
dc.description.references Thakur, V., Mangla, S.K.: Change management for sustainability: evaluating the role of human, operational and technological factors in leading Indian firms in home appliances sector. J. Clean. Prod. 213, 847–862 (2019) es_ES
dc.description.references Lindström, J., Kyösti, P., Birk, W., Lejon, E.: An initial model for zero defect manufacturing. Appl. Sci. 10, 4570 (2020) es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem