- -

A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

Mostrar el registro completo del ítem

Lin, B.; Zhu, F.; Zhang, J.; Chen, J.; Chen, X.; Xiong, NN.; Lloret, J. (2019). A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing. IEEE Transactions on Industrial Informatics. 15(7):4254-4265. https://doi.org/10.1109/TII.2019.2905659

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188453

Ficheros en el ítem

Metadatos del ítem

Título: A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing
Autor: Lin, Bing Zhu, Fangning Zhang, Jianshan Chen, Jiaqing Chen, Xing Xiong, Naixue N. Lloret, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effectiveway to deploy scientificworkflows. Each task of a scientific workflow requires several large ...[+]
Palabras clave: Cloud computing , Data placement , Data transmission time , Edge computing , Scientific workflow
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Transactions on Industrial Informatics. (issn: 1551-3203 )
DOI: 10.1109/TII.2019.2905659
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/TII.2019.2905659
Código del Proyecto:
info:eu-repo/grantAgreement/NKRDPC//2018YFB1004800/
info:eu-repo/grantAgreement/Natural Science Foundation of Fujian Province//2019J01061386/
info:eu-repo/grantAgreement/Guiding Project of Fujian Province//2018H0017/
info:eu-repo/grantAgreement/FJUT//MJXY-KF-EIC1802/
Agradecimientos:
This work was supported in part by the National Key R&D Program of China under Grant 2018YFB1004800, in part by the Natural Science Foundation of Fujian Province under Grant 2019J01061386, in part by the Guiding Project ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem