- -

A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lin, Bing es_ES
dc.contributor.author Zhu, Fangning es_ES
dc.contributor.author Zhang, Jianshan es_ES
dc.contributor.author Chen, Jiaqing es_ES
dc.contributor.author Chen, Xing es_ES
dc.contributor.author Xiong, Naixue N. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-20T18:03:47Z
dc.date.available 2022-10-20T18:03:47Z
dc.date.issued 2019-07 es_ES
dc.identifier.issn 1551-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188453
dc.description.abstract [EN] Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effectiveway to deploy scientificworkflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the factors impacting transmission delay, such as the bandwidth between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover and mutation operators of the genetic algorithm were adopted to avoid the premature convergence of traditional particle swarm optimization algo-rithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing. es_ES
dc.description.sponsorship This work was supported in part by the National Key R&D Program of China under Grant 2018YFB1004800, in part by the Natural Science Foundation of Fujian Province under Grant 2019J01061386, in part by the Guiding Project of Fujian Province under Grant 2018H0017, in part by the Talent Program of Fujian Province for Distinguished Young Scholars in Higher Education, and in part by the Electronic Information and Control Open Fund of Fujian University Engineering Research Center under Grant MJXY-KF-EIC1802. Paper no. TII-19-0313. (Corresponding author: Xing Chen.) es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cloud computing es_ES
dc.subject Data placement es_ES
dc.subject Data transmission time es_ES
dc.subject Edge computing es_ES
dc.subject Scientific workflow es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TII.2019.2905659 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NKRDPC//2018YFB1004800/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Fujian Province//2019J01061386/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Guiding Project of Fujian Province//2018H0017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FJUT//MJXY-KF-EIC1802/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Lin, B.; Zhu, F.; Zhang, J.; Chen, J.; Chen, X.; Xiong, NN.; Lloret, J. (2019). A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing. IEEE Transactions on Industrial Informatics. 15(7):4254-4265. https://doi.org/10.1109/TII.2019.2905659 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TII.2019.2905659 es_ES
dc.description.upvformatpinicio 4254 es_ES
dc.description.upvformatpfin 4265 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\473049 es_ES
dc.contributor.funder Fujian University of Technology es_ES
dc.contributor.funder Guiding Project of Fujian Province es_ES
dc.contributor.funder Natural Science Foundation of Fujian Province es_ES
dc.contributor.funder National Key Research and Development Program of China es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem