- -

Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ren, Zhenwen es_ES
dc.contributor.author Mukherjee, Mithun es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Venu, P. es_ES
dc.date.accessioned 2022-10-21T18:03:26Z
dc.date.available 2022-10-21T18:03:26Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 1551-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188564
dc.description.abstract [EN] In the cognitive computing of intelligent industrial Internet of Things, clustering is a fundamental machine learning problem to exploit the latent data relationships. To overcome the challenge of kernel choice for nonlinear clustering tasks, multiple kernel clustering (MKC) has attracted intensive attention. However, existing graph-based MKC methods mainly aim to learn a consensus kernel as well as an affinity graph from multiple candidate kernels, which cannot fully exploit the latent graph information. In this article, we propose a novel pure graph-based MKC method. Specifically, a new graph model is proposed to preserve the local manifold structure of the data in kernel space so as to learn multiple candidate graphs. Afterward, the latent consistency and selfishness of these candidate graphs are fully considered. Furthermore, a graph connectivity constraint is introduced to avoid requiring any postprocessing clustering step. Comprehensive experimental results demonstrate the superiority of our method. es_ES
dc.description.sponsorship This work was supported in part by Sichuan Science and Technology Program under Grant 2020ZDZX0014 and Grant 2019ZDZX0119 and in part by the Key Lab of Film and TV Media Technology of Zhejiang Province under Grant 2020E10015. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Clustering es_ES
dc.subject Cognitive computing es_ES
dc.subject Graph learning es_ES
dc.subject Industrial Internet of Things (IIoT) es_ES
dc.subject Multiple kernel clustering (MKC) es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TII.2020.3010357 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2020ZDZX0014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2020E10015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0119/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Ren, Z.; Mukherjee, M.; Lloret, J.; Venu, P. (2021). Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT. IEEE Transactions on Industrial Informatics. 17(4):2956-2963. https://doi.org/10.1109/TII.2020.3010357 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TII.2020.3010357 es_ES
dc.description.upvformatpinicio 2956 es_ES
dc.description.upvformatpfin 2963 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\473173 es_ES
dc.contributor.funder Science and Technology Department of Zhejiang Province es_ES
dc.contributor.funder Sichuan Province Science and Technology Support Program es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem