Mostrar el registro sencillo del ítem
dc.contributor.author | Ren, Zhenwen | es_ES |
dc.contributor.author | Mukherjee, Mithun | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Venu, P. | es_ES |
dc.date.accessioned | 2022-10-21T18:03:26Z | |
dc.date.available | 2022-10-21T18:03:26Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 1551-3203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188564 | |
dc.description.abstract | [EN] In the cognitive computing of intelligent industrial Internet of Things, clustering is a fundamental machine learning problem to exploit the latent data relationships. To overcome the challenge of kernel choice for nonlinear clustering tasks, multiple kernel clustering (MKC) has attracted intensive attention. However, existing graph-based MKC methods mainly aim to learn a consensus kernel as well as an affinity graph from multiple candidate kernels, which cannot fully exploit the latent graph information. In this article, we propose a novel pure graph-based MKC method. Specifically, a new graph model is proposed to preserve the local manifold structure of the data in kernel space so as to learn multiple candidate graphs. Afterward, the latent consistency and selfishness of these candidate graphs are fully considered. Furthermore, a graph connectivity constraint is introduced to avoid requiring any postprocessing clustering step. Comprehensive experimental results demonstrate the superiority of our method. | es_ES |
dc.description.sponsorship | This work was supported in part by Sichuan Science and Technology Program under Grant 2020ZDZX0014 and Grant 2019ZDZX0119 and in part by the Key Lab of Film and TV Media Technology of Zhejiang Province under Grant 2020E10015. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Industrial Informatics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Cognitive computing | es_ES |
dc.subject | Graph learning | es_ES |
dc.subject | Industrial Internet of Things (IIoT) | es_ES |
dc.subject | Multiple kernel clustering (MKC) | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TII.2020.3010357 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2020ZDZX0014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2020E10015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0119/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Ren, Z.; Mukherjee, M.; Lloret, J.; Venu, P. (2021). Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT. IEEE Transactions on Industrial Informatics. 17(4):2956-2963. https://doi.org/10.1109/TII.2020.3010357 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TII.2020.3010357 | es_ES |
dc.description.upvformatpinicio | 2956 | es_ES |
dc.description.upvformatpfin | 2963 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\473173 | es_ES |
dc.contributor.funder | Science and Technology Department of Zhejiang Province | es_ES |
dc.contributor.funder | Sichuan Province Science and Technology Support Program | es_ES |