- -

Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT

Mostrar el registro completo del ítem

Ren, Z.; Mukherjee, M.; Lloret, J.; Venu, P. (2021). Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT. IEEE Transactions on Industrial Informatics. 17(4):2956-2963. https://doi.org/10.1109/TII.2020.3010357

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188564

Ficheros en el ítem

Metadatos del ítem

Título: Multiple Kernel Driven Clustering With Locally Consistent and Selfish Graph in Industrial IoT
Autor: Ren, Zhenwen Mukherjee, Mithun Lloret, Jaime Venu, P.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] In the cognitive computing of intelligent industrial Internet of Things, clustering is a fundamental machine learning problem to exploit the latent data relationships. To overcome the challenge of kernel choice for ...[+]
Palabras clave: Clustering , Cognitive computing , Graph learning , Industrial Internet of Things (IIoT) , Multiple kernel clustering (MKC)
Derechos de uso: Reserva de todos los derechos
Fuente:
IEEE Transactions on Industrial Informatics. (issn: 1551-3203 )
DOI: 10.1109/TII.2020.3010357
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/TII.2020.3010357
Código del Proyecto:
info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2020ZDZX0014/
info:eu-repo/grantAgreement/Science and Technology Department of Zhejiang Province//2020E10015/
info:eu-repo/grantAgreement/Sichuan Province Science and Technology Support Program//2019ZDZX0119/
Agradecimientos:
This work was supported in part by Sichuan Science and Technology Program under Grant 2020ZDZX0014 and Grant 2019ZDZX0119 and in part by the Key Lab of Film and TV Media Technology of Zhejiang Province under Grant 2020E10015.[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem