Mostrar el registro sencillo del ítem
dc.contributor.author | Benner, Peter | es_ES |
dc.contributor.author | Dufrechou, Ernesto | es_ES |
dc.contributor.author | Ezzatti, Pablo | es_ES |
dc.contributor.author | Gallardo, Rodrigo | es_ES |
dc.contributor.author | Quintana-Ortí, Enrique S. | es_ES |
dc.date.accessioned | 2022-10-27T09:33:49Z | |
dc.date.available | 2022-10-27T09:33:49Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188824 | |
dc.description.abstract | [EN] We investigate the factorized solution of generalized stable Sylvester equations such as those arising in model reduction, image restoration, and observer design. Our algorithms, based on the matrix sign function, take advantage of the current trend to integrate high performance graphics accelerators (also known as GPUs) in computer systems. As a result, our realisations provide a valuable tool to solve large-scale problems on a variety of platforms. | es_ES |
dc.description.sponsorship | We acknowledge support of the ANII - MPG Independent Research Group: "Efficient Hetergenous Computing" at UdelaR, a partner group of the Max Planck Institute in Magdeburg. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sylvester equation | es_ES |
dc.subject | Matrix sign function | es_ES |
dc.subject | Newton iteration | es_ES |
dc.subject | GPUs | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-021-03658-y | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Benner, P.; Dufrechou, E.; Ezzatti, P.; Gallardo, R.; Quintana-Ortí, ES. (2021). Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators. The Journal of Supercomputing (Online). 77(9):10152-19164. https://doi.org/10.1007/s11227-021-03658-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-021-03658-y | es_ES |
dc.description.upvformatpinicio | 10152 | es_ES |
dc.description.upvformatpfin | 19164 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 77 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1573-0484 | es_ES |
dc.relation.pasarela | S\448157 | es_ES |
dc.contributor.funder | Max Planck Society | es_ES |
dc.description.references | Benner P, Quintana-Ortí ES, Quintana-Ortí G (2005) Solving stable Sylvester equations via rational iterative schemes. J Sci Comput 28(1):51–83 | es_ES |
dc.description.references | Aldhaheri R (1991) Model order reduction via real Schur-form decomposition. Int J Control 53(3):709–716 | es_ES |
dc.description.references | Benner P, Himpe C (2019) Cross-Gramian-based dominant subspaces. Adv Comput Math 45(5):2533–2553 | es_ES |
dc.description.references | Fernando K, Nicholson H (1984) On a fundamental property of the cross-Gramian matrix. IEEE Trans Circuits Syst CAS-31(5):504–505 | es_ES |
dc.description.references | Himpe C, Ohlberger M (2014) Cross-Gramian based combined state and parameter reduction for large-scale control systems. Math. Probl. Eng. 2014:843869 | es_ES |
dc.description.references | Calvetti D, Reichel L (1996) Application of ADI iterative methods to the restoration of noisy images. SIAM J Matrix Anal Appl 17:165–186 | es_ES |
dc.description.references | Datta B (2003) Numerical methods for linear control systems design and analysis. Elsevier Press, Amsterdam | es_ES |
dc.description.references | Grasedyck L (2004) Existence of a low rank or $$H$$-matrix approximant to the solution of a Sylvester equation. Numer Lin Alg Appl 11:371–389 | es_ES |
dc.description.references | Benner P (2004) “Factorized solution of Sylvester equations with applications in control,” in Proc. Intl. Symp. Math. Theory Networks and Syst, MTNS, p 2004 | es_ES |
dc.description.references | Köhler M, Saak J (2016) On GPU acceleration of common solvers for (quasi-) triangular generalized Lyapunov equations. Par Comp 57:212–221 | es_ES |
dc.description.references | Köhler M , Saak J (2016) On BLAS level-3 implementations of common solvers for (quasi-) triangular generalized Lyapunov equations. ACM Trans Math Softw 43(1), art. no. 3 | es_ES |
dc.description.references | Schwarz A, Mikkelsen C (2019) Robust task-parallel solution of the triangular Sylvester equation. In: International Conference on Parallel Processing and Applied Mathematics. Springer, Cham | es_ES |
dc.description.references | Xiao M, Lv Q, Xing Z, Zhang Y (2017) A parallel two-stage iteration method for solving continuous Sylvester equations. Algorithms 10(3), art. no. 95 | es_ES |
dc.description.references | Benner P, Ezzatti P, Mena H, Quintana-Ortí ES, Remón A (2013) Solving matrix equations on multi-core and many-core architectures. Algorithms 6(4):857–870 | es_ES |
dc.description.references | Dufrechu E, Ezzatti P, Quintana-Ortí ES, Remón A (2013) Accelerating the Lyapack library using GPUs. J Supercomput 65(3):1114–1124. https://doi.org/10.1007/s11227-013-0889-8 | es_ES |
dc.description.references | Bartels R, Stewart G (1972) Solution of the matrix equation $${AX}+{XB}={C}$$: Algorithm 432. Commun ACM 15:820–826 | es_ES |
dc.description.references | Enright W (1978) Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans Math Softw 4:127–136 | es_ES |
dc.description.references | Golub GH, Nash S, Van Loan C F (1979)A Hessenberg–Schur method for the problem $$AX+XB=C$$. IEEE Trans Aut Control AC-24:909–913 | es_ES |
dc.description.references | Roberts J (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32:677–687 (Reprint Tech. Report No. TR-13, CUED/B-Control, Cambridge Univ., Engineering Dept., 1971) | es_ES |
dc.description.references | Benner P, Quintana-Ortí ES (1999) Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algor 20(1):75–100 | es_ES |
dc.description.references | Benner P, Claver J, Quintana-Ortí E (1999) Parallel distributed solvers for large stable generalized Lyapunov equations. Parallel Proc Lett 9(1):147–158 | es_ES |
dc.description.references | Byers R (1987) Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl 85:267–279 | es_ES |
dc.description.references | Higham N (1986) Computing the polar decomposition-with applications. SIAM J Sci Statist Comput 7:1160–1174 | es_ES |
dc.description.references | Chan T (1987) Rank revealing QR factorizations. Linear Algebra Appl 88(89):67–82 | es_ES |
dc.description.references | Abels J, Benner P (1999) CAREX—a collection of benchmark examples for continuous-time algebraic Riccati equations (version 2.0).’ SLICOT Working Note 1999-14, Available from http://www.slicot.org | es_ES |
dc.description.references | Slowik M, Benner P, Sima V (2007) Evaluation of the linear matrix equation solvers in SLICOT. J Numer Anal Ind Appl Math 2(1–2):11–34 | es_ES |
dc.description.references | Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comp 54:97–107 | es_ES |