- -

Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benner, Peter es_ES
dc.contributor.author Dufrechou, Ernesto es_ES
dc.contributor.author Ezzatti, Pablo es_ES
dc.contributor.author Gallardo, Rodrigo es_ES
dc.contributor.author Quintana-Ortí, Enrique S. es_ES
dc.date.accessioned 2022-10-27T09:33:49Z
dc.date.available 2022-10-27T09:33:49Z
dc.date.issued 2021-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188824
dc.description.abstract [EN] We investigate the factorized solution of generalized stable Sylvester equations such as those arising in model reduction, image restoration, and observer design. Our algorithms, based on the matrix sign function, take advantage of the current trend to integrate high performance graphics accelerators (also known as GPUs) in computer systems. As a result, our realisations provide a valuable tool to solve large-scale problems on a variety of platforms. es_ES
dc.description.sponsorship We acknowledge support of the ANII - MPG Independent Research Group: "Efficient Hetergenous Computing" at UdelaR, a partner group of the Max Planck Institute in Magdeburg. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sylvester equation es_ES
dc.subject Matrix sign function es_ES
dc.subject Newton iteration es_ES
dc.subject GPUs es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-021-03658-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Benner, P.; Dufrechou, E.; Ezzatti, P.; Gallardo, R.; Quintana-Ortí, ES. (2021). Factorized solution of generalized stable Sylvester equations using many-core GPU accelerators. The Journal of Supercomputing (Online). 77(9):10152-19164. https://doi.org/10.1007/s11227-021-03658-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-021-03658-y es_ES
dc.description.upvformatpinicio 10152 es_ES
dc.description.upvformatpfin 19164 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1573-0484 es_ES
dc.relation.pasarela S\448157 es_ES
dc.contributor.funder Max Planck Society es_ES
dc.description.references Benner P, Quintana-Ortí ES, Quintana-Ortí G (2005) Solving stable Sylvester equations via rational iterative schemes. J Sci Comput 28(1):51–83 es_ES
dc.description.references Aldhaheri R (1991) Model order reduction via real Schur-form decomposition. Int J Control 53(3):709–716 es_ES
dc.description.references Benner P, Himpe C (2019) Cross-Gramian-based dominant subspaces. Adv Comput Math 45(5):2533–2553 es_ES
dc.description.references Fernando K, Nicholson H (1984) On a fundamental property of the cross-Gramian matrix. IEEE Trans Circuits Syst CAS-31(5):504–505 es_ES
dc.description.references Himpe C, Ohlberger M (2014) Cross-Gramian based combined state and parameter reduction for large-scale control systems. Math. Probl. Eng. 2014:843869 es_ES
dc.description.references Calvetti D, Reichel L (1996) Application of ADI iterative methods to the restoration of noisy images. SIAM J Matrix Anal Appl 17:165–186 es_ES
dc.description.references Datta B (2003) Numerical methods for linear control systems design and analysis. Elsevier Press, Amsterdam es_ES
dc.description.references Grasedyck L (2004) Existence of a low rank or $$H$$-matrix approximant to the solution of a Sylvester equation. Numer Lin Alg Appl 11:371–389 es_ES
dc.description.references Benner P (2004) “Factorized solution of Sylvester equations with applications in control,” in Proc. Intl. Symp. Math. Theory Networks and Syst, MTNS, p 2004 es_ES
dc.description.references Köhler M, Saak J (2016) On GPU acceleration of common solvers for (quasi-) triangular generalized Lyapunov equations. Par Comp 57:212–221 es_ES
dc.description.references Köhler M , Saak J (2016) On BLAS level-3 implementations of common solvers for (quasi-) triangular generalized Lyapunov equations. ACM Trans Math Softw 43(1), art. no. 3 es_ES
dc.description.references Schwarz A, Mikkelsen C (2019) Robust task-parallel solution of the triangular Sylvester equation. In: International Conference on Parallel Processing and Applied Mathematics. Springer, Cham es_ES
dc.description.references Xiao M, Lv Q, Xing Z, Zhang Y (2017) A parallel two-stage iteration method for solving continuous Sylvester equations. Algorithms 10(3), art. no. 95 es_ES
dc.description.references Benner P, Ezzatti P, Mena H, Quintana-Ortí ES, Remón A (2013) Solving matrix equations on multi-core and many-core architectures. Algorithms 6(4):857–870 es_ES
dc.description.references Dufrechu E, Ezzatti P, Quintana-Ortí ES, Remón A (2013) Accelerating the Lyapack library using GPUs. J Supercomput 65(3):1114–1124. https://doi.org/10.1007/s11227-013-0889-8 es_ES
dc.description.references Bartels R, Stewart G (1972) Solution of the matrix equation $${AX}+{XB}={C}$$: Algorithm 432. Commun ACM 15:820–826 es_ES
dc.description.references Enright W (1978) Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans Math Softw 4:127–136 es_ES
dc.description.references Golub GH, Nash S, Van Loan C F (1979)A Hessenberg–Schur method for the problem $$AX+XB=C$$. IEEE Trans Aut Control AC-24:909–913 es_ES
dc.description.references Roberts J (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32:677–687 (Reprint Tech. Report No. TR-13, CUED/B-Control, Cambridge Univ., Engineering Dept., 1971) es_ES
dc.description.references Benner P, Quintana-Ortí ES (1999) Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algor 20(1):75–100 es_ES
dc.description.references Benner P, Claver J, Quintana-Ortí E (1999) Parallel distributed solvers for large stable generalized Lyapunov equations. Parallel Proc Lett 9(1):147–158 es_ES
dc.description.references Byers R (1987) Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl 85:267–279 es_ES
dc.description.references Higham N (1986) Computing the polar decomposition-with applications. SIAM J Sci Statist Comput 7:1160–1174 es_ES
dc.description.references Chan T (1987) Rank revealing QR factorizations. Linear Algebra Appl 88(89):67–82 es_ES
dc.description.references Abels J, Benner P (1999) CAREX—a collection of benchmark examples for continuous-time algebraic Riccati equations (version 2.0).’ SLICOT Working Note 1999-14, Available from http://www.slicot.org es_ES
dc.description.references Slowik M, Benner P, Sima V (2007) Evaluation of the linear matrix equation solvers in SLICOT. J Numer Anal Ind Appl Math 2(1–2):11–34 es_ES
dc.description.references Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comp 54:97–107 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem