Benner P, Quintana-Ortí ES, Quintana-Ortí G (2005) Solving stable Sylvester equations via rational iterative schemes. J Sci Comput 28(1):51–83
Aldhaheri R (1991) Model order reduction via real Schur-form decomposition. Int J Control 53(3):709–716
Benner P, Himpe C (2019) Cross-Gramian-based dominant subspaces. Adv Comput Math 45(5):2533–2553
[+]
Benner P, Quintana-Ortí ES, Quintana-Ortí G (2005) Solving stable Sylvester equations via rational iterative schemes. J Sci Comput 28(1):51–83
Aldhaheri R (1991) Model order reduction via real Schur-form decomposition. Int J Control 53(3):709–716
Benner P, Himpe C (2019) Cross-Gramian-based dominant subspaces. Adv Comput Math 45(5):2533–2553
Fernando K, Nicholson H (1984) On a fundamental property of the cross-Gramian matrix. IEEE Trans Circuits Syst CAS-31(5):504–505
Himpe C, Ohlberger M (2014) Cross-Gramian based combined state and parameter reduction for large-scale control systems. Math. Probl. Eng. 2014:843869
Calvetti D, Reichel L (1996) Application of ADI iterative methods to the restoration of noisy images. SIAM J Matrix Anal Appl 17:165–186
Datta B (2003) Numerical methods for linear control systems design and analysis. Elsevier Press, Amsterdam
Grasedyck L (2004) Existence of a low rank or $$H$$-matrix approximant to the solution of a Sylvester equation. Numer Lin Alg Appl 11:371–389
Benner P (2004) “Factorized solution of Sylvester equations with applications in control,” in Proc. Intl. Symp. Math. Theory Networks and Syst, MTNS, p 2004
Köhler M, Saak J (2016) On GPU acceleration of common solvers for (quasi-) triangular generalized Lyapunov equations. Par Comp 57:212–221
Köhler M , Saak J (2016) On BLAS level-3 implementations of common solvers for (quasi-) triangular generalized Lyapunov equations. ACM Trans Math Softw 43(1), art. no. 3
Schwarz A, Mikkelsen C (2019) Robust task-parallel solution of the triangular Sylvester equation. In: International Conference on Parallel Processing and Applied Mathematics. Springer, Cham
Xiao M, Lv Q, Xing Z, Zhang Y (2017) A parallel two-stage iteration method for solving continuous Sylvester equations. Algorithms 10(3), art. no. 95
Benner P, Ezzatti P, Mena H, Quintana-Ortí ES, Remón A (2013) Solving matrix equations on multi-core and many-core architectures. Algorithms 6(4):857–870
Dufrechu E, Ezzatti P, Quintana-Ortí ES, Remón A (2013) Accelerating the Lyapack library using GPUs. J Supercomput 65(3):1114–1124. https://doi.org/10.1007/s11227-013-0889-8
Bartels R, Stewart G (1972) Solution of the matrix equation $${AX}+{XB}={C}$$: Algorithm 432. Commun ACM 15:820–826
Enright W (1978) Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans Math Softw 4:127–136
Golub GH, Nash S, Van Loan C F (1979)A Hessenberg–Schur method for the problem $$AX+XB=C$$. IEEE Trans Aut Control AC-24:909–913
Roberts J (1980) Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int J Control 32:677–687 (Reprint Tech. Report No. TR-13, CUED/B-Control, Cambridge Univ., Engineering Dept., 1971)
Benner P, Quintana-Ortí ES (1999) Solving stable generalized Lyapunov equations with the matrix sign function. Numer Algor 20(1):75–100
Benner P, Claver J, Quintana-Ortí E (1999) Parallel distributed solvers for large stable generalized Lyapunov equations. Parallel Proc Lett 9(1):147–158
Byers R (1987) Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl 85:267–279
Higham N (1986) Computing the polar decomposition-with applications. SIAM J Sci Statist Comput 7:1160–1174
Chan T (1987) Rank revealing QR factorizations. Linear Algebra Appl 88(89):67–82
Abels J, Benner P (1999) CAREX—a collection of benchmark examples for continuous-time algebraic Riccati equations (version 2.0).’ SLICOT Working Note 1999-14, Available from http://www.slicot.org
Slowik M, Benner P, Sima V (2007) Evaluation of the linear matrix equation solvers in SLICOT. J Numer Anal Ind Appl Math 2(1–2):11–34
Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comp 54:97–107
[-]