- -

Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations

Mostrar el registro completo del ítem

Pérez-Ruiz, R. (2022). Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Topics in Current Chemistry (Online). 380(4):1-12. https://doi.org/10.1007/s41061-022-00378-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188912

Ficheros en el ítem

Metadatos del ítem

Título: Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations
Autor: Pérez-Ruiz, Raúl
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Photon upconversion (UC) based on triplet¿triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires ...[+]
Palabras clave: Photon upconversion , Triplet-triplet annihilation , Photocatalysts, Activation , Organic applications
Derechos de uso: Reserva de todos los derechos
Fuente:
Topics in Current Chemistry (Online). (eissn: 2364-8961 )
DOI: 10.1007/s41061-022-00378-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s41061-022-00378-6
Código del Proyecto:
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/
Agradecimientos:
Financial support from Generalitat Valenciana (CIDEGENT/2018/044) is gratefully acknowledged
Tipo: Artículo

References

Parker CA, Hatchard CG (1962). Proc R Chem Soc Lond. https://doi.org/10.1039/TF9615701894

Wang X-Y, Del Guerzo A, Schmehl RH (2004) J Photochem Photobiol C 5:55–77. https://doi.org/10.1016/j.jphotochemrev.2004.01.002

Kozlov DVN, Castellano FN (2004). Chem Commun. https://doi.org/10.1039/B412681E [+]
Parker CA, Hatchard CG (1962). Proc R Chem Soc Lond. https://doi.org/10.1039/TF9615701894

Wang X-Y, Del Guerzo A, Schmehl RH (2004) J Photochem Photobiol C 5:55–77. https://doi.org/10.1016/j.jphotochemrev.2004.01.002

Kozlov DVN, Castellano FN (2004). Chem Commun. https://doi.org/10.1039/B412681E

Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, Hayashi- Takagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025

Askes SHC, Pomp W, Hopkins SL, Kros A, Wu S, Schmidt T, Bonnet S (2016) Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet–triplet annihilation upconversion. Small 12:5579–5590. https://doi.org/10.1002/smll.201601708

Sanders SN, Gangishetty MK, Sfeir MY, Congreve DN (2019) Photon upconversion in aqueous nanodroplets. J Am Chem Soc 141:9180–9184. https://doi.org/10.1021/jacs.9b03992

Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134:5390–5397. https://doi.org/10.1021/ja3003638

Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH (2016) Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10:1512–1521. https://doi.org/10.1021/acsnano.5b07075

Yildiz D, Baumann C, Mikosch A, Kuehne AJ, Herrmann A, Göstl R (2019) Angew Chem Int Ed 58:12919–12923. https://doi.org/10.1002/anie.201907436

Menon KR, Jose S, Suraishkumar GK (2014) Photon up-conversion increases biomass yield in Chlorella vulgaris. Biotechnol J 9:1547–1553. https://doi.org/10.1002/biot.201400216

Monguzzi A, Borisov S, Pedrini J, Klimant I, Salvalaggio M, Biagini P, Melchiorre F, Lelii C, Meinardi F (2015) Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv Funct Mater 25:5617–5624. https://doi.org/10.1002/adfm.201502507

Simpson C, Clarke TM, MacQueen RW, Cheng YY, Trevitt AJ, Mozer AJ, Wagner P, Schmidt TW, Nattestad A (2015) An intermediate band dye sensitised solar cell using triplet–triplet annihilation. Phys Chem Chem Phys 17:24826–24830. https://doi.org/10.1039/C5CP04825G

Hill SP, Banerjee T, Dilbeck T, Hanson K (2015) Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J Phys Chem Lett 6:4510–4517. https://doi.org/10.1021/acs.jpclett.5b02120

Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J Phys Chem Lett 4:2073–2078. https://doi.org/10.1021/jz401050u

Fang JJ, Wang W, Zhu C, Fang L, Jin J, Ni Y, Lu C, Xu Z (2017) CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl Catal B 217:100–107. https://doi.org/10.1016/j.apcatb.2017.05.069

Kwon OS, Kim JH, Cho JK, Kim JH (2015) Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl Mater Interfaces 7:318–325. https://doi.org/10.1021/am506233h

Askes SHC, Kloz M, Bruylants G, Kennis JT, Bonnet S (2015) Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys Chem Chem Phys 17:27380–27390. https://doi.org/10.1039/C5CP04352B

Askes SHC, Bahreman A, Bonnet S (2014) Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew Chem Int Ed 53:1029–1033. https://doi.org/10.1002/anie.201309389

Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G (2017) Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew Chem Int Ed 56:14400–14404. https://doi.org/10.1002/anie.201704430

McNaught AD, Wilkinson A (1997) International Union of Pure and Applied Chemistry; Compendium of Chemical Terminology: IUPAC Recommendations, 2nd edn. Blackwell Science, Malden, p vii

Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80. https://doi.org/10.1126/science.1161976

Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887. https://doi.org/10.1021/ja805387f

Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057

Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r

Shaw MH, Twilton J, MacMillan DWC (2016) Photoredox catalysis in organic chemistry. J Org Chem 81:6898–6926. https://doi.org/10.1021/acs.joc.6b01449

Marzo L, Pagire SK, Reiser O, König B (2018) Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed 57:10034–10072. https://doi.org/10.1002/anie.201709766

Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2000) Photodimerization of anthracenes in fluid solution: structural aspects. Chem Soc Rev 29:43–55. https://doi.org/10.1039/A801821I

Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2001) Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage. Chem Soc Rev 30:248–263. https://doi.org/10.1039/B006013P

Islangulov RR, Castellano FN (2006) Photochemical upconversion: anthracene dimerization sensitized to visible light by a RuII chromophore. Angew Chem Int Ed 45:5957–5959. https://doi.org/10.1002/anie.200601615

Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A (2015) Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem Eur J 21:15496–15501. https://doi.org/10.1002/chem.201502698

López-Calixto CG, Liras M, de la Peña O’Shea VA, Pérez-Ruiz R (2018) Synchronized biphotonic process triggering C-C coupling catalytic reactions. Appl Catal B 237:18–23. https://doi.org/10.1016/j.apcatb.2018.05.062

Garnes-Portolés F, Greco R, Oliver-Meseguer J, Castellanos-Soriano J, Jiménez MC, López-Haro M, Hernández-Garrido JC, Boronat M, Pérez-Ruiz R, Leyva-Pérez A (2021) Regioirregular and catalytic Mizoroki-Heck reactions. Nat Catal 4:293–303. https://doi.org/10.1038/s41929-021-00592-3

Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J Am Chem Soc 137:1887–1894. https://doi.org/10.1021/ja511061h

Häring M, Pérez-Ruiz R, Jacobi von Wangelin A, Díaz Díaz D (2015) Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem Commun 51:16848–16851. https://doi.org/10.1039/C5CC06917C

Rao M, Kanagaraj K, Fan C, Ji J, Xiao C, Wei X, Wu W, Yang C (2018) Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet−triplet annihilation. Org Lett 20:1680–1683. https://doi.org/10.1021/acs.orglett.8b00520

Liu S, Liu H, Shen L, Xiao Z, Hu Y, Zhou J, Wang X, Liu Z, Li Z, Li X (2022) Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chem Eng J 431:133377(1–11). https://doi.org/10.1016/j.cej.2021.133377

Kerzig C, Wegner OS (2018) Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem Sci 9:6670–6678. https://doi.org/10.1039/C8SC01829D

Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM (2019) Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565:343–346. https://doi.org/10.1038/s41586-018-0835-2

Tokunaga A, Uriarte LM, Mutoh K, Fron E, Hofkens J, Sliwa M, Abe J (2019) Photochromic reaction by red light via triplet fusion upconversion. J Am Chem Soc 141:17744–17753. https://doi.org/10.1021/jacs.9b08219

Amemori S, Sasaki Y, Yanai N, Kimizuka N (2016) Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J Am Chem Soc 138:8702–8705. https://doi.org/10.1021/jacs.6b04692

Liu D, Zhao Y, Wang Z, Xu K, Zhao J (2018) Exploiting the benefit of S0 → T1 excitation in triplet−triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2′-bipyridine) osmium(II) complex. Dalton Trans 47:8619–8628. https://doi.org/10.1039/C7DT04803C

Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, HayashiTakagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025

Sasaki Y, Amemori S, Kouno H, Yanai N, Kimizuka N (2017) Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J Mater Chem C 5:5063–5067. https://doi.org/10.1039/C7TC00827A

Bilger JB, Kerzig C, Larsen CB, Wenger OS (2021) A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J Am Chem Soc 143:1651–1663. https://doi.org/10.1021/jacs.0c12805

Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 2009(38):976–989. https://doi.org/10.1039/B809132N

Wu S, Blinco JP, Barner-Kowollik C (2017) Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem Eur J 23:8325–8332. https://doi.org/10.1002/chem.201700658

Wang H, Zhan S, Wu X, Wu L, Liu Y (2021) Nanoporous fluorescent sensor based on upconversion nanoparticles for the detection of dichloromethane with high sensitivity. RSC Adv 11:565–571. https://doi.org/10.1039/D0RA08058F

Mçller N, Hellwig T, Stricker L, Engel S, Fallnich C, Ravoo BJ (2017) Near-infrared photoswitching of cyclodextrin–guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem Commun 53:240–243. https://doi.org/10.1039/C6CC08321H

Jalani G, Naccache R, Rosenzweig DH, Haglund L, Vetrone F, Cerruti M (2016) Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J Am Chem Soc 138:1078–1083. https://doi.org/10.1021/jacs.5b12357

Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F (2019) Photocatalysis in the dark: near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem 3:24–27. https://doi.org/10.1002/cptc.201800212

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem