- -

Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.date.accessioned 2022-10-28T10:29:00Z
dc.date.available 2022-10-28T10:29:00Z
dc.date.issued 2022-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188912
dc.description.abstract [EN] Photon upconversion (UC) based on triplet¿triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA¿UC systems are found to be suitable photosensitizers for several chemical transformations es_ES
dc.description.sponsorship Financial support from Generalitat Valenciana (CIDEGENT/2018/044) is gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Topics in Current Chemistry (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photon upconversion es_ES
dc.subject Triplet-triplet annihilation es_ES
dc.subject Photocatalysts, Activation es_ES
dc.subject Organic applications es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s41061-022-00378-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pérez-Ruiz, R. (2022). Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Topics in Current Chemistry (Online). 380(4):1-12. https://doi.org/10.1007/s41061-022-00378-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s41061-022-00378-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 380 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2364-8961 es_ES
dc.identifier.pmid 35445872 es_ES
dc.relation.pasarela S\462590 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Parker CA, Hatchard CG (1962). Proc R Chem Soc Lond. https://doi.org/10.1039/TF9615701894 es_ES
dc.description.references Wang X-Y, Del Guerzo A, Schmehl RH (2004) J Photochem Photobiol C 5:55–77. https://doi.org/10.1016/j.jphotochemrev.2004.01.002 es_ES
dc.description.references Kozlov DVN, Castellano FN (2004). Chem Commun. https://doi.org/10.1039/B412681E es_ES
dc.description.references Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, Hayashi- Takagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025 es_ES
dc.description.references Askes SHC, Pomp W, Hopkins SL, Kros A, Wu S, Schmidt T, Bonnet S (2016) Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet–triplet annihilation upconversion. Small 12:5579–5590. https://doi.org/10.1002/smll.201601708 es_ES
dc.description.references Sanders SN, Gangishetty MK, Sfeir MY, Congreve DN (2019) Photon upconversion in aqueous nanodroplets. J Am Chem Soc 141:9180–9184. https://doi.org/10.1021/jacs.9b03992 es_ES
dc.description.references Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134:5390–5397. https://doi.org/10.1021/ja3003638 es_ES
dc.description.references Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH (2016) Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10:1512–1521. https://doi.org/10.1021/acsnano.5b07075 es_ES
dc.description.references Yildiz D, Baumann C, Mikosch A, Kuehne AJ, Herrmann A, Göstl R (2019) Angew Chem Int Ed 58:12919–12923. https://doi.org/10.1002/anie.201907436 es_ES
dc.description.references Menon KR, Jose S, Suraishkumar GK (2014) Photon up-conversion increases biomass yield in Chlorella vulgaris. Biotechnol J 9:1547–1553. https://doi.org/10.1002/biot.201400216 es_ES
dc.description.references Monguzzi A, Borisov S, Pedrini J, Klimant I, Salvalaggio M, Biagini P, Melchiorre F, Lelii C, Meinardi F (2015) Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv Funct Mater 25:5617–5624. https://doi.org/10.1002/adfm.201502507 es_ES
dc.description.references Simpson C, Clarke TM, MacQueen RW, Cheng YY, Trevitt AJ, Mozer AJ, Wagner P, Schmidt TW, Nattestad A (2015) An intermediate band dye sensitised solar cell using triplet–triplet annihilation. Phys Chem Chem Phys 17:24826–24830. https://doi.org/10.1039/C5CP04825G es_ES
dc.description.references Hill SP, Banerjee T, Dilbeck T, Hanson K (2015) Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J Phys Chem Lett 6:4510–4517. https://doi.org/10.1021/acs.jpclett.5b02120 es_ES
dc.description.references Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J Phys Chem Lett 4:2073–2078. https://doi.org/10.1021/jz401050u es_ES
dc.description.references Fang JJ, Wang W, Zhu C, Fang L, Jin J, Ni Y, Lu C, Xu Z (2017) CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl Catal B 217:100–107. https://doi.org/10.1016/j.apcatb.2017.05.069 es_ES
dc.description.references Kwon OS, Kim JH, Cho JK, Kim JH (2015) Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl Mater Interfaces 7:318–325. https://doi.org/10.1021/am506233h es_ES
dc.description.references Askes SHC, Kloz M, Bruylants G, Kennis JT, Bonnet S (2015) Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys Chem Chem Phys 17:27380–27390. https://doi.org/10.1039/C5CP04352B es_ES
dc.description.references Askes SHC, Bahreman A, Bonnet S (2014) Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew Chem Int Ed 53:1029–1033. https://doi.org/10.1002/anie.201309389 es_ES
dc.description.references Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G (2017) Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew Chem Int Ed 56:14400–14404. https://doi.org/10.1002/anie.201704430 es_ES
dc.description.references McNaught AD, Wilkinson A (1997) International Union of Pure and Applied Chemistry; Compendium of Chemical Terminology: IUPAC Recommendations, 2nd edn. Blackwell Science, Malden, p vii es_ES
dc.description.references Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80. https://doi.org/10.1126/science.1161976 es_ES
dc.description.references Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887. https://doi.org/10.1021/ja805387f es_ES
dc.description.references Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r es_ES
dc.description.references Shaw MH, Twilton J, MacMillan DWC (2016) Photoredox catalysis in organic chemistry. J Org Chem 81:6898–6926. https://doi.org/10.1021/acs.joc.6b01449 es_ES
dc.description.references Marzo L, Pagire SK, Reiser O, König B (2018) Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed 57:10034–10072. https://doi.org/10.1002/anie.201709766 es_ES
dc.description.references Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2000) Photodimerization of anthracenes in fluid solution: structural aspects. Chem Soc Rev 29:43–55. https://doi.org/10.1039/A801821I es_ES
dc.description.references Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2001) Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage. Chem Soc Rev 30:248–263. https://doi.org/10.1039/B006013P es_ES
dc.description.references Islangulov RR, Castellano FN (2006) Photochemical upconversion: anthracene dimerization sensitized to visible light by a RuII chromophore. Angew Chem Int Ed 45:5957–5959. https://doi.org/10.1002/anie.200601615 es_ES
dc.description.references Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A (2015) Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem Eur J 21:15496–15501. https://doi.org/10.1002/chem.201502698 es_ES
dc.description.references López-Calixto CG, Liras M, de la Peña O’Shea VA, Pérez-Ruiz R (2018) Synchronized biphotonic process triggering C-C coupling catalytic reactions. Appl Catal B 237:18–23. https://doi.org/10.1016/j.apcatb.2018.05.062 es_ES
dc.description.references Garnes-Portolés F, Greco R, Oliver-Meseguer J, Castellanos-Soriano J, Jiménez MC, López-Haro M, Hernández-Garrido JC, Boronat M, Pérez-Ruiz R, Leyva-Pérez A (2021) Regioirregular and catalytic Mizoroki-Heck reactions. Nat Catal 4:293–303. https://doi.org/10.1038/s41929-021-00592-3 es_ES
dc.description.references Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J Am Chem Soc 137:1887–1894. https://doi.org/10.1021/ja511061h es_ES
dc.description.references Häring M, Pérez-Ruiz R, Jacobi von Wangelin A, Díaz Díaz D (2015) Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem Commun 51:16848–16851. https://doi.org/10.1039/C5CC06917C es_ES
dc.description.references Rao M, Kanagaraj K, Fan C, Ji J, Xiao C, Wei X, Wu W, Yang C (2018) Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet−triplet annihilation. Org Lett 20:1680–1683. https://doi.org/10.1021/acs.orglett.8b00520 es_ES
dc.description.references Liu S, Liu H, Shen L, Xiao Z, Hu Y, Zhou J, Wang X, Liu Z, Li Z, Li X (2022) Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chem Eng J 431:133377(1–11). https://doi.org/10.1016/j.cej.2021.133377 es_ES
dc.description.references Kerzig C, Wegner OS (2018) Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem Sci 9:6670–6678. https://doi.org/10.1039/C8SC01829D es_ES
dc.description.references Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM (2019) Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565:343–346. https://doi.org/10.1038/s41586-018-0835-2 es_ES
dc.description.references Tokunaga A, Uriarte LM, Mutoh K, Fron E, Hofkens J, Sliwa M, Abe J (2019) Photochromic reaction by red light via triplet fusion upconversion. J Am Chem Soc 141:17744–17753. https://doi.org/10.1021/jacs.9b08219 es_ES
dc.description.references Amemori S, Sasaki Y, Yanai N, Kimizuka N (2016) Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J Am Chem Soc 138:8702–8705. https://doi.org/10.1021/jacs.6b04692 es_ES
dc.description.references Liu D, Zhao Y, Wang Z, Xu K, Zhao J (2018) Exploiting the benefit of S0 → T1 excitation in triplet−triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2′-bipyridine) osmium(II) complex. Dalton Trans 47:8619–8628. https://doi.org/10.1039/C7DT04803C es_ES
dc.description.references Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, HayashiTakagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025 es_ES
dc.description.references Sasaki Y, Amemori S, Kouno H, Yanai N, Kimizuka N (2017) Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J Mater Chem C 5:5063–5067. https://doi.org/10.1039/C7TC00827A es_ES
dc.description.references Bilger JB, Kerzig C, Larsen CB, Wenger OS (2021) A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J Am Chem Soc 143:1651–1663. https://doi.org/10.1021/jacs.0c12805 es_ES
dc.description.references Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 2009(38):976–989. https://doi.org/10.1039/B809132N es_ES
dc.description.references Wu S, Blinco JP, Barner-Kowollik C (2017) Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem Eur J 23:8325–8332. https://doi.org/10.1002/chem.201700658 es_ES
dc.description.references Wang H, Zhan S, Wu X, Wu L, Liu Y (2021) Nanoporous fluorescent sensor based on upconversion nanoparticles for the detection of dichloromethane with high sensitivity. RSC Adv 11:565–571. https://doi.org/10.1039/D0RA08058F es_ES
dc.description.references Mçller N, Hellwig T, Stricker L, Engel S, Fallnich C, Ravoo BJ (2017) Near-infrared photoswitching of cyclodextrin–guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem Commun 53:240–243. https://doi.org/10.1039/C6CC08321H es_ES
dc.description.references Jalani G, Naccache R, Rosenzweig DH, Haglund L, Vetrone F, Cerruti M (2016) Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J Am Chem Soc 138:1078–1083. https://doi.org/10.1021/jacs.5b12357 es_ES
dc.description.references Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F (2019) Photocatalysis in the dark: near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem 3:24–27. https://doi.org/10.1002/cptc.201800212 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem