Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Ruiz, Raúl | es_ES |
dc.date.accessioned | 2022-10-28T10:29:00Z | |
dc.date.available | 2022-10-28T10:29:00Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188912 | |
dc.description.abstract | [EN] Photon upconversion (UC) based on triplet¿triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA¿UC systems are found to be suitable photosensitizers for several chemical transformations | es_ES |
dc.description.sponsorship | Financial support from Generalitat Valenciana (CIDEGENT/2018/044) is gratefully acknowledged | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Topics in Current Chemistry (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Photon upconversion | es_ES |
dc.subject | Triplet-triplet annihilation | es_ES |
dc.subject | Photocatalysts, Activation | es_ES |
dc.subject | Organic applications | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s41061-022-00378-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Pérez-Ruiz, R. (2022). Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Topics in Current Chemistry (Online). 380(4):1-12. https://doi.org/10.1007/s41061-022-00378-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s41061-022-00378-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 380 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2364-8961 | es_ES |
dc.identifier.pmid | 35445872 | es_ES |
dc.relation.pasarela | S\462590 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | Parker CA, Hatchard CG (1962). Proc R Chem Soc Lond. https://doi.org/10.1039/TF9615701894 | es_ES |
dc.description.references | Wang X-Y, Del Guerzo A, Schmehl RH (2004) J Photochem Photobiol C 5:55–77. https://doi.org/10.1016/j.jphotochemrev.2004.01.002 | es_ES |
dc.description.references | Kozlov DVN, Castellano FN (2004). Chem Commun. https://doi.org/10.1039/B412681E | es_ES |
dc.description.references | Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, Hayashi- Takagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025 | es_ES |
dc.description.references | Askes SHC, Pomp W, Hopkins SL, Kros A, Wu S, Schmidt T, Bonnet S (2016) Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet–triplet annihilation upconversion. Small 12:5579–5590. https://doi.org/10.1002/smll.201601708 | es_ES |
dc.description.references | Sanders SN, Gangishetty MK, Sfeir MY, Congreve DN (2019) Photon upconversion in aqueous nanodroplets. J Am Chem Soc 141:9180–9184. https://doi.org/10.1021/jacs.9b03992 | es_ES |
dc.description.references | Liu Q, Yang T, Feng W, Li F (2012) Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J Am Chem Soc 134:5390–5397. https://doi.org/10.1021/ja3003638 | es_ES |
dc.description.references | Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH (2016) Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10:1512–1521. https://doi.org/10.1021/acsnano.5b07075 | es_ES |
dc.description.references | Yildiz D, Baumann C, Mikosch A, Kuehne AJ, Herrmann A, Göstl R (2019) Angew Chem Int Ed 58:12919–12923. https://doi.org/10.1002/anie.201907436 | es_ES |
dc.description.references | Menon KR, Jose S, Suraishkumar GK (2014) Photon up-conversion increases biomass yield in Chlorella vulgaris. Biotechnol J 9:1547–1553. https://doi.org/10.1002/biot.201400216 | es_ES |
dc.description.references | Monguzzi A, Borisov S, Pedrini J, Klimant I, Salvalaggio M, Biagini P, Melchiorre F, Lelii C, Meinardi F (2015) Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv Funct Mater 25:5617–5624. https://doi.org/10.1002/adfm.201502507 | es_ES |
dc.description.references | Simpson C, Clarke TM, MacQueen RW, Cheng YY, Trevitt AJ, Mozer AJ, Wagner P, Schmidt TW, Nattestad A (2015) An intermediate band dye sensitised solar cell using triplet–triplet annihilation. Phys Chem Chem Phys 17:24826–24830. https://doi.org/10.1039/C5CP04825G | es_ES |
dc.description.references | Hill SP, Banerjee T, Dilbeck T, Hanson K (2015) Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J Phys Chem Lett 6:4510–4517. https://doi.org/10.1021/acs.jpclett.5b02120 | es_ES |
dc.description.references | Nattestad A, Cheng YY, MacQueen RW, Schulze TF, Thompson FW, Mozer AJ, Fückel B, Khoury T, Crossley MJ, Lips K, Wallace GG, Schmidt TW (2013) Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J Phys Chem Lett 4:2073–2078. https://doi.org/10.1021/jz401050u | es_ES |
dc.description.references | Fang JJ, Wang W, Zhu C, Fang L, Jin J, Ni Y, Lu C, Xu Z (2017) CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl Catal B 217:100–107. https://doi.org/10.1016/j.apcatb.2017.05.069 | es_ES |
dc.description.references | Kwon OS, Kim JH, Cho JK, Kim JH (2015) Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl Mater Interfaces 7:318–325. https://doi.org/10.1021/am506233h | es_ES |
dc.description.references | Askes SHC, Kloz M, Bruylants G, Kennis JT, Bonnet S (2015) Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys Chem Chem Phys 17:27380–27390. https://doi.org/10.1039/C5CP04352B | es_ES |
dc.description.references | Askes SHC, Bahreman A, Bonnet S (2014) Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew Chem Int Ed 53:1029–1033. https://doi.org/10.1002/anie.201309389 | es_ES |
dc.description.references | Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G (2017) Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew Chem Int Ed 56:14400–14404. https://doi.org/10.1002/anie.201704430 | es_ES |
dc.description.references | McNaught AD, Wilkinson A (1997) International Union of Pure and Applied Chemistry; Compendium of Chemical Terminology: IUPAC Recommendations, 2nd edn. Blackwell Science, Malden, p vii | es_ES |
dc.description.references | Nicewicz DA, MacMillan DWC (2008) Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322:77–80. https://doi.org/10.1126/science.1161976 | es_ES |
dc.description.references | Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887. https://doi.org/10.1021/ja805387f | es_ES |
dc.description.references | Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116:10075–10166. https://doi.org/10.1021/acs.chemrev.6b00057 | es_ES |
dc.description.references | Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363. https://doi.org/10.1021/cr300503r | es_ES |
dc.description.references | Shaw MH, Twilton J, MacMillan DWC (2016) Photoredox catalysis in organic chemistry. J Org Chem 81:6898–6926. https://doi.org/10.1021/acs.joc.6b01449 | es_ES |
dc.description.references | Marzo L, Pagire SK, Reiser O, König B (2018) Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed 57:10034–10072. https://doi.org/10.1002/anie.201709766 | es_ES |
dc.description.references | Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2000) Photodimerization of anthracenes in fluid solution: structural aspects. Chem Soc Rev 29:43–55. https://doi.org/10.1039/A801821I | es_ES |
dc.description.references | Bouas-Laurent H, Castellan A, Desvergne J-P, Lapouyade R (2001) Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage. Chem Soc Rev 30:248–263. https://doi.org/10.1039/B006013P | es_ES |
dc.description.references | Islangulov RR, Castellano FN (2006) Photochemical upconversion: anthracene dimerization sensitized to visible light by a RuII chromophore. Angew Chem Int Ed 45:5957–5959. https://doi.org/10.1002/anie.200601615 | es_ES |
dc.description.references | Majek M, Faltermeier U, Dick B, Pérez-Ruiz R, Jacobi von Wangelin A (2015) Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem Eur J 21:15496–15501. https://doi.org/10.1002/chem.201502698 | es_ES |
dc.description.references | López-Calixto CG, Liras M, de la Peña O’Shea VA, Pérez-Ruiz R (2018) Synchronized biphotonic process triggering C-C coupling catalytic reactions. Appl Catal B 237:18–23. https://doi.org/10.1016/j.apcatb.2018.05.062 | es_ES |
dc.description.references | Garnes-Portolés F, Greco R, Oliver-Meseguer J, Castellanos-Soriano J, Jiménez MC, López-Haro M, Hernández-Garrido JC, Boronat M, Pérez-Ruiz R, Leyva-Pérez A (2021) Regioirregular and catalytic Mizoroki-Heck reactions. Nat Catal 4:293–303. https://doi.org/10.1038/s41929-021-00592-3 | es_ES |
dc.description.references | Duan P, Yanai N, Nagatomi H, Kimizuka N (2015) Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J Am Chem Soc 137:1887–1894. https://doi.org/10.1021/ja511061h | es_ES |
dc.description.references | Häring M, Pérez-Ruiz R, Jacobi von Wangelin A, Díaz Díaz D (2015) Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem Commun 51:16848–16851. https://doi.org/10.1039/C5CC06917C | es_ES |
dc.description.references | Rao M, Kanagaraj K, Fan C, Ji J, Xiao C, Wei X, Wu W, Yang C (2018) Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet−triplet annihilation. Org Lett 20:1680–1683. https://doi.org/10.1021/acs.orglett.8b00520 | es_ES |
dc.description.references | Liu S, Liu H, Shen L, Xiao Z, Hu Y, Zhou J, Wang X, Liu Z, Li Z, Li X (2022) Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chem Eng J 431:133377(1–11). https://doi.org/10.1016/j.cej.2021.133377 | es_ES |
dc.description.references | Kerzig C, Wegner OS (2018) Sensitized triplet–triplet annihilation upconversion in water and its application to photochemical transformations. Chem Sci 9:6670–6678. https://doi.org/10.1039/C8SC01829D | es_ES |
dc.description.references | Ravetz BD, Pun AB, Churchill EM, Congreve DN, Rovis T, Campos LM (2019) Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565:343–346. https://doi.org/10.1038/s41586-018-0835-2 | es_ES |
dc.description.references | Tokunaga A, Uriarte LM, Mutoh K, Fron E, Hofkens J, Sliwa M, Abe J (2019) Photochromic reaction by red light via triplet fusion upconversion. J Am Chem Soc 141:17744–17753. https://doi.org/10.1021/jacs.9b08219 | es_ES |
dc.description.references | Amemori S, Sasaki Y, Yanai N, Kimizuka N (2016) Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J Am Chem Soc 138:8702–8705. https://doi.org/10.1021/jacs.6b04692 | es_ES |
dc.description.references | Liu D, Zhao Y, Wang Z, Xu K, Zhao J (2018) Exploiting the benefit of S0 → T1 excitation in triplet−triplet annihilation upconversion to attain large anti-stokes shifts: tuning the triplet state lifetime of a tris(2,2′-bipyridine) osmium(II) complex. Dalton Trans 47:8619–8628. https://doi.org/10.1039/C7DT04803C | es_ES |
dc.description.references | Sasaki Y, Oshikawa M, Bharmoria P, Kouno H, HayashiTakagi A, Sato M, Ajioka I, Yanai N, Kimizuka N (2019) Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew Chem Int Ed 58:17827–17833. https://doi.org/10.1002/anie.201911025 | es_ES |
dc.description.references | Sasaki Y, Amemori S, Kouno H, Yanai N, Kimizuka N (2017) Near infrared-to-blue photon upconversion by exploiting direct S-T absorption of a molecular sensitizer. J Mater Chem C 5:5063–5067. https://doi.org/10.1039/C7TC00827A | es_ES |
dc.description.references | Bilger JB, Kerzig C, Larsen CB, Wenger OS (2021) A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J Am Chem Soc 143:1651–1663. https://doi.org/10.1021/jacs.0c12805 | es_ES |
dc.description.references | Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 2009(38):976–989. https://doi.org/10.1039/B809132N | es_ES |
dc.description.references | Wu S, Blinco JP, Barner-Kowollik C (2017) Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem Eur J 23:8325–8332. https://doi.org/10.1002/chem.201700658 | es_ES |
dc.description.references | Wang H, Zhan S, Wu X, Wu L, Liu Y (2021) Nanoporous fluorescent sensor based on upconversion nanoparticles for the detection of dichloromethane with high sensitivity. RSC Adv 11:565–571. https://doi.org/10.1039/D0RA08058F | es_ES |
dc.description.references | Mçller N, Hellwig T, Stricker L, Engel S, Fallnich C, Ravoo BJ (2017) Near-infrared photoswitching of cyclodextrin–guest complexes using lanthanide-doped LiYF4 upconversion nanoparticles. Chem Commun 53:240–243. https://doi.org/10.1039/C6CC08321H | es_ES |
dc.description.references | Jalani G, Naccache R, Rosenzweig DH, Haglund L, Vetrone F, Cerruti M (2016) Photocleavable hydrogel-coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J Am Chem Soc 138:1078–1083. https://doi.org/10.1021/jacs.5b12357 | es_ES |
dc.description.references | Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F (2019) Photocatalysis in the dark: near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem 3:24–27. https://doi.org/10.1002/cptc.201800212 | es_ES |