- -

Contaminant Source Identification in Aquifers: A Critical View

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contaminant Source Identification in Aquifers: A Critical View

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Xu, Teng es_ES
dc.date.accessioned 2022-11-03T10:38:12Z
dc.date.available 2022-11-03T10:38:12Z
dc.date.issued 2022-02 es_ES
dc.identifier.issn 1874-8961 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189073
dc.description.abstract [EN] Forty years and 157 papers later, research on contaminant source identification has grown exponentially in number but seems to be stalled concerning advancement towards the problem solution and its field application. This paper presents a historical evolution of the subject, highlighting its major advances. It also shows how the subject has grown in sophistication regarding the solution of the core problem (the source identification), forgetting that, from a practical point of view, such identification is worthless unless it is accompanied by a joint identification of the other uncertain parameters that characterize flow and transport in aquifers. es_ES
dc.description.sponsorship The first author wishes to acknowledge the financial contribution of the Spanish Ministry of Science and Innovation through Project No. PID2019-109131RB-I00, and the second author acknowledges the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program from Jiangsu Provincial Department of Education (B19052). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mathematical Geosciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Simulation-optimization es_ES
dc.subject Backward tracking es_ES
dc.subject Bayesian approach es_ES
dc.subject Machine learning es_ES
dc.subject Surrogate models es_ES
dc.subject Heuristic approaches es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Contaminant Source Identification in Aquifers: A Critical View es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11004-021-09976-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JPDE//B19052/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Gómez-Hernández, JJ.; Xu, T. (2022). Contaminant Source Identification in Aquifers: A Critical View. Mathematical Geosciences. 54(2):437-458. https://doi.org/10.1007/s11004-021-09976-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11004-021-09976-4 es_ES
dc.description.upvformatpinicio 437 es_ES
dc.description.upvformatpfin 458 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\446464 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Jiangsu Provincial Department of Education es_ES
dc.contributor.funder Fundamental Research Funds for the Central Universities es_ES
dc.description.references Aanonsen S, Nævdal G, Oliver D, Reynolds A, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J 14(3):393–412 es_ES
dc.description.references Aghasi A, Mendoza-Sanchez I, Miller EL, Ramsburg CA, Abriola LM (2013) A geometric approach to joint inversion with applications to contaminant source zone characterization. Inverse Prob 29(11):115014. https://doi.org/10.1088/0266-5611/29/11/115014 es_ES
dc.description.references Ala NK, Domenico PA (1992) Inverse analytical techniques applied to coincident contaminant distributions at Otis Air Force Base, Massachusetts. Groundwater 30(2):212–218. https://doi.org/10.1111/j.1745-6584.1992.tb01793.x es_ES
dc.description.references Amirabdollahian M, Datta B (2013) Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J Environ Protect. https://doi.org/10.4236/jep.2013.45a004 es_ES
dc.description.references Aral MM, Guan J (1996) Genetic algorithms in search of groundwater pollution sources. In: Advances in groundwater pollution control and remediation. Springer, Netherlands, Dordrecht, pp 347–369. https://doi.org/10.1007/978-94-009-0205-3_17 es_ES
dc.description.references Ayvaz MT (2016) A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems. J Hydrol 538:161–176. https://doi.org/10.1016/j.jhydrol.2016.04.008 es_ES
dc.description.references Bagtzoglou AC, Tompson AFB, Dougherty DE (1991) Probabilistic simulation for reliable solute source identification in heterogeneous porous media. In: Water resources engineering risk assessment. Springer, Berlin, pp 189–201. https://doi.org/10.1007/978-3-642-76971-9_12 es_ES
dc.description.references Bagtzoglou AC, Dougherty DE, Tompson AFB (1992) Application of particle methods to reliable identification of groundwater pollution sources. Water Resour Manag 6(1):15–23. https://doi.org/10.1007/BF00872184 es_ES
dc.description.references Cao T, Zeng X, Wu J, Wang D, Sun Y, Zhu X, Lin J, Long Y (2019) Groundwater contaminant source identification via Bayesian model selection and uncertainty quantification. Hydrogeol J 27(8):2907–2918. https://doi.org/10.1007/s10040-019-02055-3 es_ES
dc.description.references Capilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geosci 31(7):907–927 es_ES
dc.description.references Carrera J (1984) Estimation of aquifer parameters under transient and steady-state conditions. PhD thesis, University of Arizona, Department of Hydrology and Water Resources es_ES
dc.description.references Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210 es_ES
dc.description.references Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29(8):1107–1122 es_ES
dc.description.references Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water Resour Res 18(4):835–848 es_ES
dc.description.references Datta B, Beegle J, Kavvas M, Orlob G (1989) Development of an expert system embedding pattern recognition techniques for pollution source identification. University of California-Davis, Technical report es_ES
dc.description.references Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367 es_ES
dc.description.references Gómez-Hernández J, Wen XH (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8(1):19–55 es_ES
dc.description.references Gorelick SM (1981) Numerical management models of groundwater pollution. Ph.D., Stanford University es_ES
dc.description.references Gorelick SM, Evans B, Remson I (1983) Identifying sources of groundwater pollution: an optimization approach. Water Resour Res 19(3):779–790. https://doi.org/10.1029/WR019i003p00779 es_ES
dc.description.references Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive McMC. Statist Comput 16(4):339–354 es_ES
dc.description.references Hosseini AH, Deutsch CV, Mendoza CA, Biggar KW (2011) Inverse modeling for characterization of uncertainty in transport parameters under uncertainty of source geometry in heterogeneous aquifers. J Hydrol 405(3–4):402–416. https://doi.org/10.1016/j.jhydrol.2011.05.039 es_ES
dc.description.references Hwang JC, Koerner RM (1983) Groundwater pollution source identification from limited monitoring data. Part 1—theory and feasibility. J Hazard Mater 8:105–119 es_ES
dc.description.references Jha MK, Datta B (2014) Linked simulation–optimization based dedicated monitoring network design for unknown pollutant source identification using dynamic time warping distance. Water Resour Manag 28(12):4161–4182. https://doi.org/10.1007/s11269-014-0737-5 es_ES
dc.description.references Jin X, Ranjithan RS, Mahinthakumar GK (2014) A monitoring network design procedure for three-dimensional (3D) groundwater contaminant source identification. Environ Forensics 15(1):78–96. https://doi.org/10.1080/15275922.2013.873095 es_ES
dc.description.references Li L, Zhou H, Franssen H, Gómez-Hernández J (2011) Groundwater flow inverse modeling in non-multigaussian media: performance assessment of the normal-score ensemble kalman filter. Hydrol Earth Syst Sci Discuss 8(4):6749–6788 es_ES
dc.description.references Li L, Zhou H, Gómez-Hernández JJ (2011) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (made) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404(3–4):278–293 es_ES
dc.description.references Li L, Zhou H, Gómez-Hernández J, Hendricks Franssen H (2012) Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J Hydrol 428:152 es_ES
dc.description.references Mahinthakumar GK, Sayeed M (2005) Hybrid genetic algorithm-local search methods for solving groundwater source identification inverse problems. J Water Resourc Plan Manag 131(1):45–57. https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45) es_ES
dc.description.references Mahinthakumar GK, Sayeed M (2006) Reconstructing groundwater source release histories using hybrid optimization approaches. Environ Forensics 7(1):45–54. https://doi.org/10.1080/15275920500506774 es_ES
dc.description.references Mirghani BY, Mahinthakumar KG, Tryby ME, Ranjithan RS, Zechman EM (2009) A parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problems. Adv Water Resour 32(9):1373–1385. https://doi.org/10.1016/j.advwatres.2009.06.001 es_ES
dc.description.references Singh RM, Datta B (2004) Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network. Environ Forensics 5(3):143–153. https://doi.org/10.1080/15275920490495873 es_ES
dc.description.references Singh RM, Datta B, Jain A (2004) Identification of unknown groundwater pollution sources using artificial neural networks. J Water Resour Plan Manag 130(6):506–514. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:6(506) es_ES
dc.description.references Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant. Water Resour Res 30(1):71–79. https://doi.org/10.1029/93WR02656 es_ES
dc.description.references Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to contaminant source identification. Water Resour Res 33(4):537–546. https://doi.org/10.1029/96WR03753 es_ES
dc.description.references Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia es_ES
dc.description.references Todaro, D’Oria M, Tanda MG, Gómez-Hernández JJ (2021) Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126215 es_ES
dc.description.references Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. J Hydrol 135(1–4):275–303. https://doi.org/10.1016/0022-1694(92)90092-A es_ES
dc.description.references Wasilkowski GW, Wozniakowski H (1995) Explicit cost bounds of algorithms for multivariate tensor product problems. J Complex 11(1):1–56 es_ES
dc.description.references Woodbury A, Sudicky E, Ulrych TJ, Ludwig R (1998) Three-dimensional plume source reconstruction using minimum relative entropy inversion. J Contam Hydrol 32(1–2):131–158. https://doi.org/10.1016/S0169-7722(97)00088-0 es_ES
dc.description.references Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32(9):2671–2681. https://doi.org/10.1029/95WR03818 es_ES
dc.description.references Xu T, Gómez-Hernández JJ (2016) Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering. Water Resour Res 52(8):6587–6595. https://doi.org/10.1002/2016WR019111 es_ES
dc.description.references Xu T, Gómez-Hernández JJ (2018) Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter. Adv Water Resour 112:106–123. https://doi.org/10.1016/j.advwatres.2017.12.011 es_ES
dc.description.references Xu T, Gómez-Hernández JJ, Zhou H, Li L (2013) The power of transient piezometric head data in inverse modeling: an application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv Water Resour 54:100–118. https://doi.org/10.1016/j.advwatres.2013.01.006 es_ES
dc.description.references Xu T, Jaime Gómez-Hernández J, Li L, Zhou H (2013) Parallelized ensemble Kalman filter for hydraulic conductivity characterization. Comput Geosci 52:42–49 es_ES
dc.description.references Yeh HD, Lin CC, Chen CF (2016) Reconstructing the release history of a groundwater contaminant based on AT123D. J Hydro-Environ Res 13:89–102. https://doi.org/10.1016/j.jher.2015.06.001 es_ES
dc.description.references Zeng L, Shi L, Zhang D, Wu L (2012) A sparse grid based Bayesian method for contaminant source identification. Adv Water Resour 37:1–9. https://doi.org/10.1016/j.advwatres.2011.09.011 es_ES
dc.description.references Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37 es_ES
dc.description.references Zhou Z, Tartakovsky DM (2021) Markov chain Monte Carlo with neural network surrogates: application to contaminant source identification. Stoch Environ Res Risk Assess 35(3):639–651 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem