Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.contributor.author | Xu, Teng | es_ES |
dc.date.accessioned | 2022-11-03T10:38:12Z | |
dc.date.available | 2022-11-03T10:38:12Z | |
dc.date.issued | 2022-02 | es_ES |
dc.identifier.issn | 1874-8961 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189073 | |
dc.description.abstract | [EN] Forty years and 157 papers later, research on contaminant source identification has grown exponentially in number but seems to be stalled concerning advancement towards the problem solution and its field application. This paper presents a historical evolution of the subject, highlighting its major advances. It also shows how the subject has grown in sophistication regarding the solution of the core problem (the source identification), forgetting that, from a practical point of view, such identification is worthless unless it is accompanied by a joint identification of the other uncertain parameters that characterize flow and transport in aquifers. | es_ES |
dc.description.sponsorship | The first author wishes to acknowledge the financial contribution of the Spanish Ministry of Science and Innovation through Project No. PID2019-109131RB-I00, and the second author acknowledges the financial support from the Fundamental Research Funds for the Central Universities (B200201015) and Jiangsu Specially-Appointed Professor Program from Jiangsu Provincial Department of Education (B19052). Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mathematical Geosciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Simulation-optimization | es_ES |
dc.subject | Backward tracking | es_ES |
dc.subject | Bayesian approach | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Surrogate models | es_ES |
dc.subject | Heuristic approaches | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Contaminant Source Identification in Aquifers: A Critical View | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11004-021-09976-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//B200201015/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JPDE//B19052/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gómez-Hernández, JJ.; Xu, T. (2022). Contaminant Source Identification in Aquifers: A Critical View. Mathematical Geosciences. 54(2):437-458. https://doi.org/10.1007/s11004-021-09976-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11004-021-09976-4 | es_ES |
dc.description.upvformatpinicio | 437 | es_ES |
dc.description.upvformatpfin | 458 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\446464 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Jiangsu Provincial Department of Education | es_ES |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | es_ES |
dc.description.references | Aanonsen S, Nævdal G, Oliver D, Reynolds A, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J 14(3):393–412 | es_ES |
dc.description.references | Aghasi A, Mendoza-Sanchez I, Miller EL, Ramsburg CA, Abriola LM (2013) A geometric approach to joint inversion with applications to contaminant source zone characterization. Inverse Prob 29(11):115014. https://doi.org/10.1088/0266-5611/29/11/115014 | es_ES |
dc.description.references | Ala NK, Domenico PA (1992) Inverse analytical techniques applied to coincident contaminant distributions at Otis Air Force Base, Massachusetts. Groundwater 30(2):212–218. https://doi.org/10.1111/j.1745-6584.1992.tb01793.x | es_ES |
dc.description.references | Amirabdollahian M, Datta B (2013) Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J Environ Protect. https://doi.org/10.4236/jep.2013.45a004 | es_ES |
dc.description.references | Aral MM, Guan J (1996) Genetic algorithms in search of groundwater pollution sources. In: Advances in groundwater pollution control and remediation. Springer, Netherlands, Dordrecht, pp 347–369. https://doi.org/10.1007/978-94-009-0205-3_17 | es_ES |
dc.description.references | Ayvaz MT (2016) A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems. J Hydrol 538:161–176. https://doi.org/10.1016/j.jhydrol.2016.04.008 | es_ES |
dc.description.references | Bagtzoglou AC, Tompson AFB, Dougherty DE (1991) Probabilistic simulation for reliable solute source identification in heterogeneous porous media. In: Water resources engineering risk assessment. Springer, Berlin, pp 189–201. https://doi.org/10.1007/978-3-642-76971-9_12 | es_ES |
dc.description.references | Bagtzoglou AC, Dougherty DE, Tompson AFB (1992) Application of particle methods to reliable identification of groundwater pollution sources. Water Resour Manag 6(1):15–23. https://doi.org/10.1007/BF00872184 | es_ES |
dc.description.references | Cao T, Zeng X, Wu J, Wang D, Sun Y, Zhu X, Lin J, Long Y (2019) Groundwater contaminant source identification via Bayesian model selection and uncertainty quantification. Hydrogeol J 27(8):2907–2918. https://doi.org/10.1007/s10040-019-02055-3 | es_ES |
dc.description.references | Capilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geosci 31(7):907–927 | es_ES |
dc.description.references | Carrera J (1984) Estimation of aquifer parameters under transient and steady-state conditions. PhD thesis, University of Arizona, Department of Hydrology and Water Resources | es_ES |
dc.description.references | Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210 | es_ES |
dc.description.references | Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29(8):1107–1122 | es_ES |
dc.description.references | Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water Resour Res 18(4):835–848 | es_ES |
dc.description.references | Datta B, Beegle J, Kavvas M, Orlob G (1989) Development of an expert system embedding pattern recognition techniques for pollution source identification. University of California-Davis, Technical report | es_ES |
dc.description.references | Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367 | es_ES |
dc.description.references | Gómez-Hernández J, Wen XH (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8(1):19–55 | es_ES |
dc.description.references | Gorelick SM (1981) Numerical management models of groundwater pollution. Ph.D., Stanford University | es_ES |
dc.description.references | Gorelick SM, Evans B, Remson I (1983) Identifying sources of groundwater pollution: an optimization approach. Water Resour Res 19(3):779–790. https://doi.org/10.1029/WR019i003p00779 | es_ES |
dc.description.references | Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive McMC. Statist Comput 16(4):339–354 | es_ES |
dc.description.references | Hosseini AH, Deutsch CV, Mendoza CA, Biggar KW (2011) Inverse modeling for characterization of uncertainty in transport parameters under uncertainty of source geometry in heterogeneous aquifers. J Hydrol 405(3–4):402–416. https://doi.org/10.1016/j.jhydrol.2011.05.039 | es_ES |
dc.description.references | Hwang JC, Koerner RM (1983) Groundwater pollution source identification from limited monitoring data. Part 1—theory and feasibility. J Hazard Mater 8:105–119 | es_ES |
dc.description.references | Jha MK, Datta B (2014) Linked simulation–optimization based dedicated monitoring network design for unknown pollutant source identification using dynamic time warping distance. Water Resour Manag 28(12):4161–4182. https://doi.org/10.1007/s11269-014-0737-5 | es_ES |
dc.description.references | Jin X, Ranjithan RS, Mahinthakumar GK (2014) A monitoring network design procedure for three-dimensional (3D) groundwater contaminant source identification. Environ Forensics 15(1):78–96. https://doi.org/10.1080/15275922.2013.873095 | es_ES |
dc.description.references | Li L, Zhou H, Franssen H, Gómez-Hernández J (2011) Groundwater flow inverse modeling in non-multigaussian media: performance assessment of the normal-score ensemble kalman filter. Hydrol Earth Syst Sci Discuss 8(4):6749–6788 | es_ES |
dc.description.references | Li L, Zhou H, Gómez-Hernández JJ (2011) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (made) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404(3–4):278–293 | es_ES |
dc.description.references | Li L, Zhou H, Gómez-Hernández J, Hendricks Franssen H (2012) Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J Hydrol 428:152 | es_ES |
dc.description.references | Mahinthakumar GK, Sayeed M (2005) Hybrid genetic algorithm-local search methods for solving groundwater source identification inverse problems. J Water Resourc Plan Manag 131(1):45–57. https://doi.org/10.1061/(asce)0733-9496(2005)131:1(45) | es_ES |
dc.description.references | Mahinthakumar GK, Sayeed M (2006) Reconstructing groundwater source release histories using hybrid optimization approaches. Environ Forensics 7(1):45–54. https://doi.org/10.1080/15275920500506774 | es_ES |
dc.description.references | Mirghani BY, Mahinthakumar KG, Tryby ME, Ranjithan RS, Zechman EM (2009) A parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problems. Adv Water Resour 32(9):1373–1385. https://doi.org/10.1016/j.advwatres.2009.06.001 | es_ES |
dc.description.references | Singh RM, Datta B (2004) Groundwater pollution source identification and simultaneous parameter estimation using pattern matching by artificial neural network. Environ Forensics 5(3):143–153. https://doi.org/10.1080/15275920490495873 | es_ES |
dc.description.references | Singh RM, Datta B, Jain A (2004) Identification of unknown groundwater pollution sources using artificial neural networks. J Water Resour Plan Manag 130(6):506–514. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:6(506) | es_ES |
dc.description.references | Skaggs TH, Kabala ZJ (1994) Recovering the release history of a groundwater contaminant. Water Resour Res 30(1):71–79. https://doi.org/10.1029/93WR02656 | es_ES |
dc.description.references | Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to contaminant source identification. Water Resour Res 33(4):537–546. https://doi.org/10.1029/96WR03753 | es_ES |
dc.description.references | Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia | es_ES |
dc.description.references | Todaro, D’Oria M, Tanda MG, Gómez-Hernández JJ (2021) Ensemble smoother with multiple data assimilation to simultaneously estimate the source location and the release history of a contaminant spill in an aquifer. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126215 | es_ES |
dc.description.references | Wagner BJ (1992) Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling. J Hydrol 135(1–4):275–303. https://doi.org/10.1016/0022-1694(92)90092-A | es_ES |
dc.description.references | Wasilkowski GW, Wozniakowski H (1995) Explicit cost bounds of algorithms for multivariate tensor product problems. J Complex 11(1):1–56 | es_ES |
dc.description.references | Woodbury A, Sudicky E, Ulrych TJ, Ludwig R (1998) Three-dimensional plume source reconstruction using minimum relative entropy inversion. J Contam Hydrol 32(1–2):131–158. https://doi.org/10.1016/S0169-7722(97)00088-0 | es_ES |
dc.description.references | Woodbury AD, Ulrych TJ (1996) Minimum relative entropy inversion: theory and application to recovering the release history of a groundwater contaminant. Water Resour Res 32(9):2671–2681. https://doi.org/10.1029/95WR03818 | es_ES |
dc.description.references | Xu T, Gómez-Hernández JJ (2016) Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering. Water Resour Res 52(8):6587–6595. https://doi.org/10.1002/2016WR019111 | es_ES |
dc.description.references | Xu T, Gómez-Hernández JJ (2018) Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter. Adv Water Resour 112:106–123. https://doi.org/10.1016/j.advwatres.2017.12.011 | es_ES |
dc.description.references | Xu T, Gómez-Hernández JJ, Zhou H, Li L (2013) The power of transient piezometric head data in inverse modeling: an application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Adv Water Resour 54:100–118. https://doi.org/10.1016/j.advwatres.2013.01.006 | es_ES |
dc.description.references | Xu T, Jaime Gómez-Hernández J, Li L, Zhou H (2013) Parallelized ensemble Kalman filter for hydraulic conductivity characterization. Comput Geosci 52:42–49 | es_ES |
dc.description.references | Yeh HD, Lin CC, Chen CF (2016) Reconstructing the release history of a groundwater contaminant based on AT123D. J Hydro-Environ Res 13:89–102. https://doi.org/10.1016/j.jher.2015.06.001 | es_ES |
dc.description.references | Zeng L, Shi L, Zhang D, Wu L (2012) A sparse grid based Bayesian method for contaminant source identification. Adv Water Resour 37:1–9. https://doi.org/10.1016/j.advwatres.2011.09.011 | es_ES |
dc.description.references | Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37 | es_ES |
dc.description.references | Zhou Z, Tartakovsky DM (2021) Markov chain Monte Carlo with neural network surrogates: application to contaminant source identification. Stoch Environ Res Risk Assess 35(3):639–651 | es_ES |