- -

In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Szafron, Jason M. es_ES
dc.contributor.author Ramachandra, Abhay B. es_ES
dc.contributor.author Humphrey, Jay D. es_ES
dc.date.accessioned 2022-11-03T10:38:20Z
dc.date.available 2022-11-03T10:38:20Z
dc.date.issued 2022-02-18 es_ES
dc.identifier.issn 1617-7959 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189080
dc.description.abstract [EN] Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, there is now a pressing need to design grafts to have optimal performance, including an ability to grow and remodel in response to changing hemodynamic loads. Toward this end, there is similarly a need for computational methods that can describe and predict the evolution of TEVG geometry, composition, and material properties while accounting for changes in hemodynamics. Although the ultimate goal is a fluid-solid-growth (FSG) model incorporating fully 3D growth and remodeling and 3D hemodynamics, lower fidelity models having high computational efficiency promise to play important roles, especially in the design of candidate grafts. We introduce here an efficient FSG model of in vivo development of a TEVG based on two simplifying concepts: mechanobiologically equilibrated growth and remodeling of the graft and an embedded control volume analysis of the hemodynamics. Illustrative simulations for a model Fontan conduit reveal the utility of this approach, which promises to be particularly useful in initial design considerations involving formal methods of optimization which otherwise add considerably to the computational expense. es_ES
dc.description.sponsorship This research was supported by grants from the NIH (R01 HL128602, R01 HL139796) and DoD/USAMRAA (W81 XWH1810518). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Biomechanics and Modeling in Mechanobiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tissue engineering es_ES
dc.subject Fontan procedure es_ES
dc.subject TEVG es_ES
dc.subject Neovessel es_ES
dc.subject Fluid-solid-growth es_ES
dc.title In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10237-022-01562-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL128602//Computational Model Driven Design of Tissue Engineered Vascular Grafts/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL139796//Improving Tissue Engineered Vascular Graft Performance via Computational Modeling/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOD//W81 XWH1810518//Development and Preclinical Validation of an Improved Tissue-Engineered Vascular Graft for Use in Congenital Surgery/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación e Innovación en Bioingeniería - Centre de Recerca i Innovació en Bioenginyeria es_ES
dc.description.bibliographicCitation Latorre, M.; Szafron, JM.; Ramachandra, AB.; Humphrey, JD. (2022). In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomechanics and Modeling in Mechanobiology. 21:827-848. https://doi.org/10.1007/s10237-022-01562-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10237-022-01562-9 es_ES
dc.description.upvformatpinicio 827 es_ES
dc.description.upvformatpfin 848 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.identifier.pmid 35179675 es_ES
dc.identifier.pmcid PMC9133046 es_ES
dc.relation.pasarela S\457250 es_ES
dc.contributor.funder U.S. Department of Defense es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233 es_ES
dc.description.references Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. constitutive relations and model simulations. Ann Biomed Eng 35(9):1498–1509 es_ES
dc.description.references Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: Fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202(3):229–243 es_ES
dc.description.references Blum KM, Zbinden J, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, BB A, Berman D, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK, (2022) Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Commun Med 2:3 es_ES
dc.description.references Bockeria L, Carrel T, Lemaire A, Makarenko V, Kim A, Shatalov K, Cox M, Svanidze O (2020) Total cavopulmonary connection with a new restorative vascular graft: results at 2 years. J Thorac Dis 12(8):4168 es_ES
dc.description.references Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664 es_ES
dc.description.references Cyron CJ, Aydin RC, Humphrey JD (2016) A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol 15(6):1389–1403 es_ES
dc.description.references Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJ, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK (2020) Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Trans Med 12(537):eaax6919 es_ES
dc.description.references Emmert MY, Schmitt BA, Loerakker S, Sanders B, Spriestersbach H, Fioretta ES, Bruder L, Brakmann K, Motta SE, Lintas V, Dijkman PE, Frese L, Berger F, Baaijens FPT, Hoerstrup SP (2018) Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med 10(440):eaan4587 es_ES
dc.description.references Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45):3583–3602 es_ES
dc.description.references Fleeter CM, Geraci G, Schiavazzi DE, Kahn AM, Marsden AL (2020) Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput Methods Appl Mech Eng 365:113030 es_ES
dc.description.references Fung YC (1995) Stress, strain, growth, and remodeling of living organisms. In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids. Birkhäuser, Basel, pp 469–482 es_ES
dc.description.references Furdella KJ, Higuchi S, Behrangzade A, Kim K, Wagner WR, Geest JPV (2021) In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance. Acta Biomater 123:298–311 es_ES
dc.description.references Grytsan A, Watton PN, Holzapfel GA (2015) A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry. J Biomech Eng 137(3):031008 es_ES
dc.description.references Harrison S, Tamimi E, Uhlorn J, Leach T, Vande Geest JP (2016) Computationally optimizing the compliance of a biopolymer based tissue engineered vascular graft. J Biomech Eng 138(1):014505 es_ES
dc.description.references Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436 es_ES
dc.description.references Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer-Verlag, New York es_ES
dc.description.references Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407–430 es_ES
dc.description.references Khosravi R, Miller KS, Best CA, Shih YC, Lee YU, Yi T, Shinoka T, Breuer CK, Humphrey JD (2015) Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation. Tissue Eng Part A 21(9–10):1529–1538 es_ES
dc.description.references Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, Prichard HL (2019) Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Trans Med 11(485):eaau6934 es_ES
dc.description.references Latorre M, Humphrey JD (2018) A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. ZAMM-J Appl Math Mech 98:2048–2071 es_ES
dc.description.references Latorre M, Humphrey JD (2020) Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput Methods Appl Mech Eng 368:113156 es_ES
dc.description.references Latorre M, Humphrey JD (2020) Numerical knockouts-in silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Comput Biol 16(10):e1008273 es_ES
dc.description.references Lee Y, Naito Y, Kurobe H, Breuer C, Humphrey J (2013) Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J Biomech 46(13):2277–2282 es_ES
dc.description.references Loerakker S, Ristori T (2020) Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. Current Opinion Biomed Eng 15:1–9 es_ES
dc.description.references Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) Febio: finite elements for biomechanics. J Biomech Eng 134(1):011005 es_ES
dc.description.references Matsuzaki Y, John K, Shoji T, Shinoka T (2019) The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl Sci 9(7):1274 es_ES
dc.description.references Miller KS, Lee YU, Naito Y, Breuer CK, Humphrey JD (2014) Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J Biomech 47(9):2080–2087 es_ES
dc.description.references Miller KS, Khosravi R, Breuer CK, Humphrey JD (2015) A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater 11:283–294 es_ES
dc.description.references Mousavi SJ, Jayendiran R, Farzaneh S, Campisi S, Viallon M, Croisille P, Avril S (2021) Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. Comput Methods Programs Biomed 205:106107 es_ES
dc.description.references Niklason LE, Lawson JH (2020) Bioengineered human blood vessels. Science 370(6513):eaaw8682 es_ES
dc.description.references Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493 es_ES
dc.description.references Reinhardt JW, Rosado JdDR, Barker JC, Lee YU, Best CA, Yi T, Zeng Q, Partida-Sanchez S, Shinoka T, Breuer CK (2019) Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regen Med 14(5):389–408 es_ES
dc.description.references Sánchez PF, Brey EM, Briceño JC (2018) Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 12(11):2164–2178 es_ES
dc.description.references Schwarz EL, Kelly JM, Blum KM, Hor KN, Yates AR, Zbinden JC, Verma A, Lindsey SE, Ramachandra AB, Szafron JM, Humphrey JD, Shinoka T, Marsden AL, Breuer CK (2021) Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. NPJ Regenerative Med 6:38 es_ES
dc.description.references Sheidaei A, Hunley SC, Zeinali-Davarani S, Raguin LG, Baek S (2011) Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys 33(1):80–88 es_ES
dc.description.references Sokolis DP (2013) Experimental investigation and constitutive modeling of the 3d histomechanical properties of vein tissue. Biomech Model Mechanobiol 12(3):431–451 es_ES
dc.description.references Stowell CET, Wang Y (2018) Quickening: translational design of resorbable synthetic vascular grafts. Biomaterials 173:71–86 es_ES
dc.description.references Syedain ZH, Graham ML, Dunn TB, O’Brien T, Johnson SL, Schumacher RJ, Tranquillo RT (2017) A completely biological “off-the-shelf’’ arteriovenous graft that recellularizes in baboons. Sci Trans Med 9(414):eaan4209 es_ES
dc.description.references Szafron JM, Khosravi R, Reinhardt J, Best CA, Bersi MR, Yi T, Breuer CK, Humphrey JD (2018) Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts. Ann Biomed Eng 46(11):1938–1950 es_ES
dc.description.references Szafron JM, Ramachandra AB, Breuer CK, Marsden AL, Humphrey JD (2019) Optimization of tissue-engineered vascular graft design using computational modeling. Tissue Eng Part C Methods 25(10):561–570 es_ES
dc.description.references Tamimi EA, Ardila DC, Ensley BD, Kellar RS, Vande Geest JP (2019) Computationally optimizing the compliance of multilayered biomimetic tissue engineered vascular grafts. J Biomech Eng 141(6):061003 es_ES
dc.description.references Teixeira FS, Neufeld E, Kuster N, Watton PN (2020) Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases. Biomech Model Mechanobiol 19(6):2413–2431 es_ES
dc.description.references Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2017) Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541 es_ES
dc.description.references Valentín A, Humphrey JD, Holzapfel GA (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Methods Biomed Eng 29(8):822–849 es_ES
dc.description.references Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606 es_ES
dc.description.references Wissing TB, van Haaften EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CVC, Smits AIPM (2020) Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages-implications for in situ vascular tissue engineering. Biomater Sci 8(1):132–147 es_ES
dc.description.references Wu J, Shadden SC (2015) Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann Biomed Eng 43(7):1543–1554 es_ES
dc.description.references Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H (2018) Tissue-engineered vascular grafts: balance of the four major requirements. Colloid Interf Sci Commun 23:34–44 es_ES
dc.description.references Yang W, Feinstein JA, Shadden SC, Vignon-Clementel IE, Marsden AL (2013) Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. J Biomech Eng 135(1):011002 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem